Heme is an important tetrapyrrole compound, and has been widely applied in food and medicine industries. Although microbial production of heme has been developed with metabolic engineering strategies during the past 20 years, the production levels are relatively low due to the multistep enzymatic processes and complicated regulatory mechanisms of microbes. Previous studies mainly adopted the strategies of strengthening precursor supply and product transportation to engineer microbes for improving heme biosynthesis. Few studies focused on the engineering and screening of efficient enzymes involved in heme biosynthesis. Herein, a growth-coupled, high-throughput selection platform based on the detoxification of Zinc-protoporphyrin IX (an analogue of heme) was developed and applied to directed evolution of coproporphyrin ferrochelatase, catalyzing the insertion of metal ions into porphyrin ring to generate heme or other tetrapyrrole compounds. A mutant with 3.03-fold increase in / was selected. Finally, growth-coupled directed evolution of another three key enzymes involved in heme biosynthesis was tested by using this selection platform. The growth-coupled selection platform developed here can be a simple and effective strategy for directed evolution of the enzymes involved in the biosynthesis of heme or other tetrapyrrole compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465345 | PMC |
http://dx.doi.org/10.3389/fbioe.2023.1236118 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.
Background/objectives: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug.
Methods: Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis.
Plants (Basel)
January 2025
College of Agriculture and Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
In rice, leucine-rich repeat nucleotide-binding site (NLR) proteins are pivotal immune receptors in combating -triggered rice blast. However, the precise molecular mechanism underlying how NLR proteins regulate downstream signalling remains elusive due to the lack of knowledge regarding their direct downstream targets. The NLR protein Pigm-1 was cloned from Shuangkang 77009 in our laboratory.
View Article and Find Full Text PDFNutrients
January 2025
School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia.
Background/objectives: For low- and middle- income country (LMIC) settings, a global nutrition transition is rapidly emerging as diets shift, resulting in a dual burden of malnutrition. High quality dietary intake data for these populations is essential to understand dietary patterns contributing to these nutrition issues. New technology is emerging to address dietary assessment challenges; however, it is unknown how researchers conducting studies with LMIC populations or under-served groups in high-income countries adopt technology-assisted methods.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Material Science and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic.
This article is a numerical and experimental study of the mechanical properties of different glass, flax and hybrid composites. By utilizing hybrid composites consisting of natural fibers, the aim is to eventually reduce the percentage usage of synthetic or man-made fibers in composites and obtain similar levels of mechanical properties that are offered by composites using synthetic fibers. This in turn would lead to greener composites being utilized.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Information Engineering, University of Florence, 50139 Florence, Italy.
The increasing demand for personalized healthcare, particularly among individuals requiring continuous health monitoring, has driven significant advancements in sensor technology. Wearable, non-continuous monitoring, and non-contact sensors are leading this innovation, providing novel methods for monitoring vital signs and physiological data in both clinical and home settings. However, there is a lack of comprehensive comparative studies assessing the overall functionality of these technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!