Adsorbate-Induced Adatom Formation on Lithium, Iron, Cobalt, Ruthenium, and Rhenium Surfaces.

JACS Au

Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.

Published: August 2023

Recent experimental and theoretical studies have demonstrated the reaction-driven metal-metal bond breaking in metal catalytic surfaces even under relatively mild conditions. Here, we construct a density functional theory (DFT) database for the adsorbate-induced adatom formation energy on the close-packed facets of three hexagonal close-packed metals (Co, Ru, and Re) and two body-centered cubic metals (Li and Fe), where the source of the ejected metal atom is either a step edge or a close-packed surface. For Co and Ru, we also considered their metastable face-centered cubic structures. We studied 18 different adsorbates relevant to catalytic processes and predicted noticeably easier adatom formation on Li and Fe compared to the other three metals. The NH- and CO-induced adatom formation on Fe(110) is possible at room temperature, a result relevant to NH synthesis and Fischer-Tropsch synthesis, respectively. There also exist other systems with favorable adsorbate effects for adatom formation relevant to catalytic processes at elevated temperatures (500-700 K). Our results offer insight into the reaction-driven formation of metal clusters, which could play the role of active sites in reactions catalyzed by Li, Fe, Co, Ru, and Re catalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466328PMC
http://dx.doi.org/10.1021/jacsau.3c00256DOI Listing

Publication Analysis

Top Keywords

adatom formation
20
adsorbate-induced adatom
8
relevant catalytic
8
catalytic processes
8
formation
6
formation lithium
4
lithium iron
4
iron cobalt
4
cobalt ruthenium
4
ruthenium rhenium
4

Similar Publications

Structure and stability of copper nanoclusters on monolayer tungsten dichalcogenides.

Dalton Trans

January 2025

Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, T12 R5CP, Ireland.

Layered materials, such as tungsten dichalcogenides (TMDs), are being studied for a wide range of applications, due to their unique and varied properties. Specifically, their use as either a support for low dimensional catalysts or as an ultrathin diffusion barrier in semiconductor devices interconnect structures are particularly relevant. In order to fully realise these possible applications for TMDs, understanding the interaction between metals and the monolayer they are deposited on is of utmost importance.

View Article and Find Full Text PDF

The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments.

View Article and Find Full Text PDF

We investigated the reactivity of a -dichlorovinyl-carbazole precursor in the on-surface synthesis approach. Our findings reveal that, on the Au(111) surface, the thermally-induced dehalogenation reaction led to the formation of cumulene dimers. Contrastingly, the more reactive Cu(111) surface promoted the formation of a polyheterocyclic compound exhibiting extended aromaticity.

View Article and Find Full Text PDF

Acenes are an important class of polycyclic aromatic hydrocarbons that have gained considerable attention from chemists, physicists, and material scientists, due to their exceptional potential for organic electronics. They serve as an ideal platform for studying the physical and chemical properties of sp carbon frameworks in the one-dimensional limit and also provide a fertile playground to explore magnetism in graphenic nanostructures due to their zigzag edge topology. While higher acenes up to tridecacene have been successfully generated by means of on-surface synthesis, it is imperative to extend their synthesis toward even longer homologues to comprehensively understand the evolution of their electronic ground state.

View Article and Find Full Text PDF

-Armchair graphene nanoribbons (nAGNRs) are promising components for next-generation nanoelectronics due to their controllable band gap, which depends on their width and edge structure. Using non-metal surfaces for fabricating nAGNRs gives access to reliable information on their electronic properties. We investigated the influence of light and iron adatoms on the debromination of 4,4''-dibromo--terphenyl precursors affording poly(-phenylene) (PPP as the narrowest GNR) wires through the Ullmann coupling reaction on a rutile TiO(110) surface, which we studied by scanning tunneling microscopy and X-ray photoemission spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!