Background: Hyaluronic acid (HA) is a naturally occurring biodegradable, high molecular weight, non-sulfated glycosaminoglycan (GAG) polymer known for its excellent biocompatibility. HA-based products are widely used as viscosupplements, dermal fillers, and ophthalmic lubricants in clinical settings. Although animal and bacterial-derived HA are commonly reported, plant-sourced HA is not frequently reported. In this study, we have evaluated various viscoelastic properties of one such plant-based HA solution and propose them as an alternative to existing animal/bacteria-sourced HA.
Materials And Methods: The viscoelastic properties of plant-sourced HA solution of various concentrations (0.1%, 0.5%, 1%, and 2% in PBS) were studied using a rheometer at 37°C. Flow curves, amplitude sweep studies, and frequency sweep studies were performed and compared for all HA solutions.
Results: The HA solutions displayed shear-thinning behavior, which is an important characteristic of an injectable biomaterial. The 0.1 and 0.5% HA were found to have viscoelastic properties appropriate for eye lubricants, while 1 and 2% HA solutions showed properties suitable for soft tissue fillers. Frequency sweep studies indicated that all the samples are typically viscoelastic liquids with a loss modulus (G″) higher than the storage modulus (G'). This indicated that the samples needed further processing like crosslinking of HA or using higher molecular weight HA to be suitable as viscosupplements. However, the frequency sweep studies also indicated that these solutions can be used as soft tissue fillers of any type based on the G' and tan δ values.
Conclusion: The plant-sourced HA solutions are found to exhibit good shear-thinning properties with viscoelastic properties suitable for eye lubricants and soft tissue fillers. However, to be used as viscosupplements, the viscoelastic properties of HA solutions have to be further modified through non-toxic crosslinking strategies, and hydrophobic derivatives as well as by using high molecular weight HAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466658 | PMC |
http://dx.doi.org/10.4103/jpbs.jpbs_63_23 | DOI Listing |
Foods
December 2024
College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
A dysphagia diet is a special dietary programme. The development and design of foods for dysphagia should consider both swallowing safety and food nutritional quality. In this study, we investigated the rheological properties (viscosity, thixotropy, and viscoelasticity), textural properties, and swallowing behaviour of commercially available natural, pregelatinised, acetylated, and phosphorylated maize starch and tapioca starch.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.
A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, PR China. Electronic address:
With the increasing demand for healthy diets, low-fat foods have gradually become a hot issue. This study successfully prepared low-internal-phase and high-viscoelastic emulsion gels using the synergistic effect between buckwheat protein microgel (BPM) and carboxylated cellulose nanofibers (CNF). The effects of the ratio of BPM to CNF on the microstructure, stability, rheological properties, and 3D printing characteristics of the emulsion gels were investigated.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care; WANG Songling Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410078.
Objectives: Drug-loaded mucoadhesive silk fibroin (SF) microneedle patch can overcome the limitations of low bioavailability and significant pain associated with traditional treatment methods, such as topical application or injection of triamcinolone for oral submucous fibrosis (OSF). However, these systems release the drug too quickly, failing to meet the clinical requirements. This study aims to construct a mucoadhesive SF microneedle patch pre-assembled with silk fibroin nanospheres (SFN) and explore its ability to sustain the release of triamcinolone in the treatment of OSF.
View Article and Find Full Text PDFWater Res
December 2024
Deptartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.
Extracellular Polymeric Substances (EPS) are ubiquitous in biological wastewater treatment (WWT) technologies like activated sludge systems, biofilm reactors, and granular sludge systems. EPS recovery from sludge potentially offers a high-value material for the industry. It can be utilized as a coating in slow-release fertilizers, as a bio-stimulant, as a binding agent in building materials, for the production of flame retarding materials, and more.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!