Introduction: Although the combined use of chemical and electrochemical decontamination protocols can completely remove contaminants from the surfaces of one-time used healing abutments (HAs), their effectiveness in multiple-used HAs remains unknown. We aimed to investigate the effect of reused HAs frequency on the implant-HA contact surface area, micro-gap, microleakage, and surface topography following chemical and combined chemical and electrochemical decontamination protocols.
Methods: Ninety bone level titanium implants were assembled with 90 bone level HAs, in which 80 contaminated HA samples were collected from human participants. The retrieved HAs were randomly divided into two groups according to the cleaning protocol: ultrasonication with 5.25% NaOCl solution for 15 min and steam autoclaving (group I); ultrasonication with 5.25% NaOCl solution for 15 min, followed by electrochemical cleaning and steam autoclaving (group II). The control group (group III) comprised 10 new unused HAs. The cleaning protocol was applied after each insertion as follows: (a) single-use and cleaning, (b) double-use and double cleaning cycles, (c) triple-use and triple cleaning cycles, and (d) more than triple-use and more than triple cleaning cycles. The contact surface area and micro-gap were assessed with micro-computed tomography scanning technique, microleakage test using 2% methylene blue staining, surface morphology with scanning electron microscopy, and surface elemental composition with energy-dispersive X-ray spectroscopy analysis.
Results: Group Id exhibited the smallest contact surface area. The values of the micro-gap volumes and microleakage were significantly different (p < 0.001) in the descending order of Id > Ic > Ib > IId > Ia, IIa, and III. Morphological evaluation of Groups IIa, IIb, and IIc revealed that residual biological debris was optimally removed without altering their surface properties.
Conclusions: Chemical and electrochemical decontamination protocols are more effective than NaOCl cleaning methods, particularly for multiple consecutive uses with better decontamination levels, which decreases micro-gap volume and microleakage without surface alterations. Although the use of combined decontamination protocols for the contact surface area at the implant-HA interface showed comparable results with the control, change in the contact surface area was observed following the NaOCl cleaning methods. Therefore, titanium HA reuse can be considered in multiple times, if they are cleaned and sterilized using combined chemical and electrochemical decontamination protocols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cid.13269 | DOI Listing |
Nano Lett
January 2025
Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China.
GaO Schottky photodiodes are being actively explored for solar-blind ultraviolet (SBUV) detection, owing to the fast photoresponse and easy fabrication. However, their performance, limited by the Schottky contact, mostly underperforms the expectations. Herein, a Ni/β-GaO vertical Schottky barrier diode (SBD) with an ultrathin anode electrode is demonstrated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
All-solid-state lithium metal batteries hold promise for meeting the industrial demands for high energy density and safety. However, voids are formed at the lithium metal anode/solid-state electrolyte interface during stripping, deteriorating interface contact and reducing the cycle stability. Stack pressure and operating temperature are effective methods to activate creep deformation in lithium metal, promoting interfacial deformation and alleviating void-induced interface issues.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States.
The effects of termination functional groups of the TiCT MXene membrane on the structural and dynamics properties of nearby water molecules and foulants are investigated through molecular dynamics simulations. The simulation results show that a much denser water layer can be formed at the vicinity of hydroxyl (OH) termination than that near fluorine (F) or oxygen (O) termination. Particular focus is given to the molecular binding properties of β-d-mannuronic acid (M) and α-l-guluronic acid (G) alginate monomers on the MXene membrane surface with different termination groups.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Center of Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Sprayable hydrogels have emerged as a transformative innovation in biomedical technology, offering a versatile, efficient, and minimally invasive platform for various clinical applications. They form gels upon tissue contact, enabling seamless application on even complex surfaces. This property is especially useful in wound care, drug delivery, and tissue engineering, where localized and sustained release of therapeutics is essential.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University Danang 550000 Vietnam
Electrolytic glucose oxidation has garnered great interest in energy-saving hydrogen generation. However, high charge-transfer resistance and inefficient active centers have been recognized as the primary issues for poor electrochemical performance. In this study, for the first time, we offer a novel defect-rich CeO /β-Ni(OH) composite nanosheet-decorated Ni foam electrocatalyst (denoted as Ce@NF-GA), synthesized a unique hydrothermal approach under the co-participation of glycerol and acetic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!