Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Calcium (Ca) and carbohydrate (CHO) supply in sweet cherry have been associated with fruit quality at harvest and during storage. There is little published information integrating CHO and Ca availability and distribution in sweet cherry and their effects on fruit quality. Accordingly, in the 2019-20 season, vascular restrictions were imposed on the phloem (girdling, G, stopping phloem flow) and xylem (transverse incision, S, cutting 50% of xylem cross-section area) of individual vertical branches of the sweet cherry combination 'Lapins'/Colt trained as Kym Green Bush system to modify mineral and CHO composition in fruit and associate such changes with quality at harvest and storage. The girdling to the phloem was used to induce changes in CHO distribution. The transverse incision to the xylem was a tool to modify Ca distribution. Five treatments (TR) were implemented: TR1-CTL = Control (without vascular restriction), TR2-G, at its base, TR3-G + G: at its base, and G further up at the change of year between the second and the third years of growth TR4--S and TR5-S + G. The vegetative (i.e., shoot and leaf growth), reproductive (i.e., fruit set and yield) development and stomatal conductance were monitored. Each branch was divided into the upper (1-and 2-year-old wood) and the lower (3-and 4-year-old wood) segments of the restriction applied. The quality and mineral composition (Ca, Mg, K, and N) of fruit borne on each segment were measured at harvest. The upper segment of TR3-G + G branches were harvested 10 d before the lower segment. The fruit from the upper segment of TR3-G + G was the largest, the sweetest, and had the higher titratable acidity concentration. However, fruits of this segment were the softest, had the lowest Ca concentrations, and had the highest ratios of N:Ca and K:Ca, compared with the other TRs. TR3-G + G branches developed the highest number of lateral current season shoots including shoots below the second girdling in the lower segment of the branch. This vegetative flow of growth would explain the mineral unbalance produced in the fruit from the upper segment of the branch. TR2-G did not register changes in fruit quality and mineral concentration compared with TR1-CTL. Surprisingly, the fruit from the branches with xylem restriction did not show changes in Ca concentration, suggesting that the xylem stream was enough to supply the fruit in branches without lateral shoot development. Fruit firmness was positively related to fruit Ca concentration and negatively related to the ratios of K:Ca and N:Ca.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223680 | PMC |
http://dx.doi.org/10.3390/plants12101922 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!