Halide perovskites exhibit outstanding optoelectronic properties, which make them an ideal choice for photocatalytic CO reduction and benzyl alcohol (BA) oxidation. Nevertheless, the simultaneous realization of the above redox coupling reactions on halide perovskites remains a great challenge, as it requires distinct catalytic sites for different target reactions. Herein, the catalytic sites of Cs AgBiCl (CABC) are regulated by doping Fe for efficient coupling of photocatalytic CO reduction and BA oxidation. The Fe-doped CABC (Fe: CABC) exhibits an enhanced visible-light response and effective charge separation. Experimental results and theoretical calculations reveal a synergistic interplay between Bi and Fe sites, where the Bi and Fe sites have lower activation energies toward CO reduction and BA oxidation. Further investigations demonstrate that electrons and holes prefer to accumulate at the Bi site and Fe site under light irradiation, respectively, which creates favorable conditions for facilitating CO reduction and BA oxidation. The resultant Fe: CABC achieves a high photocatalytic performance toward CO (18.5 µmol g h ) and BD (1.1 mmol g h ) generation, which surpasses most of the state-of-the-art halide photocatalysts. This work demonstrates a facile strategy for regulating the catalytic site for redox coupling reactions, which will pave a new way for designing halide perovskites for photocatalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202304756 | DOI Listing |
Chem Sci
January 2025
Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India https://www.jncasr.ac.in/faculty/tmaji.
Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi 110-016, India.
Pyridinium salts are amine surrogates that are abundant in nature and the redox active nature of the pyridinium salts allows them to serve as precursors for generating radical species under mild conditions that can be initiated by light, heat or metal catalysis. The stereoselective formation of products has always been a topic of interest for synthetic chemists worldwide. In this context, pyridinium salts can readily undergo single electron reduction to form a neutral radical, and the N-X bond's subsequent fragmentation furnishes the X radical without any harsh reaction conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Institute of Ceramics Chinese Academy of Sciences, State Key Laboratory of High Performance Ceramics and Superfine Microstructure, CHINA.
Pairing photocatalytic 1,2,3,4-tetrahydroisoquinoline semi-dehydrogenation reaction (THIQ-SDR) with two-electron oxygen reduction reaction (2e- ORR) is a green solar to chemical strategy by simultaneously utilizing the photo-excited electrons and holes. However, it is still short of high-efficiency photocatalyst to drive two reactions above. In the present work, crystalline pyrene-thiourea/urea covalent organic frameworks (COF-Py-S and -O) were synthesized and demonstrated as high-performance metal-free photocatalysts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
Heterogeneity engineering provides an effective route to manipulate the chemical and physical properties of covalent organic frameworks (COFs) but is still under development for their single-crystal form. Here, we report the strategy based on a combination of the template-assisted modulated synthesis with a one-pot crystallization-reduction method to directly construct ordered macro-microporous single crystals of an amine-linked three-dimensional (3D) COF (OM-COF-300-SR). In this strategy, the colloidal crystal-templating synthesis not only assists the formation of ordered macropores but also greatly facilitates the in situ conversion of linkages (from imine to amine) in the COF-300 single crystals.
View Article and Find Full Text PDFInorg Chem
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China.
Photocatalytic reduction of nitrate to N holds great significance for environmental governance. However, the selectivity of nitrate reduction to N is influenced by sacrificial agents and the kinds of cocatalysts (such as Pt and Ag). The presence of unconsumed sacrificial agents can aggravate environmental pollution, while noble metal-based cocatalysts increase application costs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!