Background: Insulin resistance (IR) can be effectively assessed using the dependable surrogate biomarker triglyceride-glucose (TyG) index. In various critical care contexts, like contrast-induced acute kidney injury (AKI), an elevated TyG index has demonstrated a robust correlation with the incidence of AKI. Nonetheless, the potential of the TyG index to predict AKI in critically ill patients with heart failure (HF) remains uncertain.
Methods: A cohort of participants was non-consecutively selected from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database and divided into quartiles based on their TyG index values. The incidence of AKI was the primary outcome. The secondary endpoint was in-hospital mortality within both the whole study population and the subset of AKI patients. The use of the renal replacement therapy (RRT) which represented the progression of AKI severity was also included as a secondary endpoint representing renal outcome. A restricted cubic splines model and Cox proportional hazards models were utilized to evaluate the association of TyG index with the risk of AKI in patients with HF in a critical condition. Kaplan-Meier survival analysis was employed to estimate primary and secondary endpoint disparities across groups differentiated by their TyG index.
Results: This study included a total of 1,393 patients, with 59% being male. The incidence of AKI was 82.8%. Cox proportional hazards analyses revealed a significant association between TyG index and the incidence of AKI in critically ill patients with HF. The restricted cubic splines model illustrated the linear relationship between higher TyG index and increased risk of AKI in this specific patient population. Furthermore, the Kaplan-Meier survival analyses unveiled statistically significant differences in the use of RRT across the subset of AKI patients based on the quartiles of the TyG index.
Conclusions: The results highlight the TyG index as a robust and independent predictor of the incidence of AKI and poor renal outcome in patients with HF in a critical condition. However, further confirmation of causality necessitates larger prospective studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472684 | PMC |
http://dx.doi.org/10.1186/s12933-023-01971-9 | DOI Listing |
Ir J Med Sci
January 2025
Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Glomerular filtration rate (GFR) as a marker of kidney function is important in health and disease management because decreased kidney function is associated with all-cause and cardiovascular mortality, progression of kidney disease, predisposition to acute kidney injury (AKI), and for drug dosage modification. While measured glomerular filtration rate (mGFR) is acknowledged as the most accurate method for evaluating kidney function, it is at present not feasible to be applied in the clinical arena. Estimated glomerular filtration rate (eGFR) is preferred due to its convenience, cost-effectiveness, and seamless integration into standard clinical practice for kidney function evaluation.
View Article and Find Full Text PDFJ Intensive Med
January 2025
Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, UCSF, San Francisco, CA, USA.
Acute kidney injury (AKI) presents a significant challenge in the management of critically ill patients, as it is associated with increased mortality, prolonged hospital stays, and increased healthcare costs. In certain conditions, such as during sepsis or after cardiac surgery, AKI is one of the most frequent complications, affecting 30%-50% of patients. Over time, even after the resolution of AKI, it can evolve into chronic kidney disease, a leading global cause of mortality, and cardiovascular complications.
View Article and Find Full Text PDFIndian J Nephrol
June 2024
Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, United States.
Introduction: Acute kidney injury (AKI) is a frequent complication of chronic liver disease (CLD) contributing to high morbidity and mortality worldwide. While liver transplantation (LT) has shown favorable outcomes, early identification and management of AKI is imperative for survival. This review aims to highlight the epidemiology, pathophysiology, management, and prognosis of AKI in CLD.
View Article and Find Full Text PDFPediatr Nephrol
January 2025
Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610000, Sichuan, China.
Background: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a notably common complication in pediatrics, with an incidence rate ranging from 15 to 64%. This rate is significantly higher than that observed in adults. Currently, there is a lack of substantial evidence regarding the association between intraoperative blood pressure variability (BPV) during cardiac surgery with cardiopulmonary bypass (CPB) and the development of AKI in pediatric patients.
View Article and Find Full Text PDFIntroduction: Podocyte injury has been proven to be a major cause for poor renal outcomes after acute kidney injury (AKI). However, clinical trial data are still limited. This study aimed to explore the clinical correlations between podocyte injury and renal outcomes in hospitalized AKI patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!