Platinum (Pt) is one of the most precious metals with a variety of unique industrial applications, particularly in catalytic reactions, being its recovery, after use, essential. Therefore, this work proposes a simplified hydrometallurgical strategy to recover Pt efficiently from the original (no milling) spent petrochemical Pt catalyst using an economical and environmentally sustainable process. To that end, the effectiveness of a two-step workflow constituted by one microwave-assisted leaching step using a mixture of hydrochloric acid (HCl) and hydrogen peroxide (HO) followed by one ion-exchange purification step was developed and optimized. It was found that complete dissolution of Pt plus aluminum (Al) and iron (Fe) from the roasted original size catalyst was achieved after microwave-assisted leaching with 25% (v/v) HCl and 2% (v/v) HO during 2 cycles of 60 s. Furthermore, a strong anionic exchange (Purogold™ A194) resin used for subsequent selective purification of Pt from Al and Fe was capable of effective separation of the metals: Pt in the eluate presented a purity of 98.1%, while Al, in the raffinate, presented a purity of 99.8%. In summation, it can be concluded that the overall process is a potentially good addition to a more circular economy as it manages to recover high-quality Pt for being reused as well as other by-products, whilst minimizing the consume of reagents, leaching time (and, thus, energy), and environmental impacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-28964-1 | DOI Listing |
Langmuir
January 2025
BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
The growing demand for energy storage batteries, driven by the need to alleviate global warming and reduce fossil fuel dependency, has led to environmental concerns surrounding spent batteries. Efficient recycling of these batteries is essential to prevent pollution and recover valuable metal ions such as nickel (Ni), cobalt (Co), and manganese (Mn). Conventional hydrometallurgical methods for battery recycling, while effective, often involve harmful chemicals and processes.
View Article and Find Full Text PDFMolecules
December 2024
Faculty of Non-Ferrous Metals, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.
Gallium, a critical and strategic material for advanced technologies, is anomalously enriched in certain coal deposits and coal by-products. Recovering gallium from solid residues generated during coal production and utilization can yield economic benefits and positive environmental gains through more efficient waste processing. This systematic literature review focuses on gallium concentrations in coal and its combustion or gasification by-products, modes of occurrence, gallium-hosting phases, and hydrometallurgical recovery methods, including pretreatment procedures that facilitate metal release from inert aluminosilicate minerals.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
National Research and Development Institute for Non-Ferrous and Rare Metals-IMNR, 102 Biruintei Blvd., 077145 Pantelimon, Ilfov, Romania.
Solid oxide fuel cells (SOFCs) and solid oxide electrolyzer cells (SOECs) represent a promising clean energy solution. In the case of SOFCs, they offer efficiency and minimal to zero CO emissions when used to convert chemical energy into electricity. When SOFC systems are operated in regenerative mode for water electrolysis, the SOFCs become solid oxide electrolyzer cells (SOECs).
View Article and Find Full Text PDFWaste Manag
December 2024
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
To alleviate the energy crisis and control environmental pollution raised by spent lithium-ion batteries (LIBs), the development of efficient and economic methods for their recycling is crucial for sustainable development of new energy industry. Herein, a combined pyro - hydrometallurgical process was adopted for recovery of valuable metal elements for spent LiNiCoMnO (NCM523). Different from conventional pyrometallurgical methods with high temperature and energy consumption, the NHHSO roasting strategy works at 400 °C and achieves remarkable leaching efficiencies of Li, Co, Mn, and Ni achieved 97.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
The transition towards a low-carbon future hinges on the advancement of Lithium-ion battery (LIBs) technology, which has spurred a significant demand for raw materials and the management of waste batteries containing hazardous substances. Developing efficient and environmentally friendly recycling strategies is essential to tackle these challenges. Here, we introduce a one-step green hydrometallurgical recycling of spent lithium-ion batteries' cathode on the basis of contact-electro-catalytic (CEC) process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!