Background: The treatment and diagnosis of non-small cell lung cancer (NSCLC) is still a difficult problem in the medical community, and exploring the molecular mechanism of the occurrence and development of NSCLC is a hot topic of the current research. Long non-coding RNA (lncRNA) NORAD is highly expressed in a variety of cancer cells. It may be a molecular target that promotes NSCLC. The aim of this study was to investigate the impacts of lncRNA NORAD on the proliferation, apoptosis, and chemosensitivity of NSCLC by regulating zinc finger protein 217 (ZNF217) through miR-199a-3p.

Methods: Real-time quantitative polymerase chain reaction (qRT-PCR) method was applied to detect the expressions of NORAD, miR-199a-3p and ZNF217 genes in normal lung epithelial cells BEAS-2B, lung cancer H460 cells, and Cisplatin (DDP) resistant cell lines H460/DDP. H460/DDP cells were devided into control group, si-NC group, si-NORAD group, miR-NC group, miR-199a-3p mimic group, si-NORAD+inhibitor NC group and si-NORAD+miR-199a-3p inhibitor group. Cell proliferation, apoptosis, the expression of NORAD, miR-199a-3p and ZNF217 genes of cells in each group were detected and the expression levels of Ki-67, caspase-9 and ZNF217 proteins in different cells were also observed. The relationship between miR-199a-3p, NORAD and ZNF217 was vefified.

Results: Compared with BEAS-2B cells, the expressions of NORAD, ZNF217 mRNA were significantly increased in H460 and H460/DDP cells (P<0.05) but the expression of miR-199a-3p was significantly reduced (P<0.05). Compared with H460 cells, the expression of NORAD and ZNF217 mRNA in H460/DDP cells was significantly increased (P<0.05) and the expression of miR-199a-3p was significantly reduced (P<0.05). Compared with the control group and si-NC group, the proliferation rate, NORAD and ZNF217 mRNA expression, Ki-67 and ZNF217 protein expression of H460/DDP cells in the si-NORAD group were significantly reduced (P<0.05), but the apoptosis rate, miR-199a-3p expression and caspase-9 expression were significantly increased (P<0.05). Compared with the miR-NC group, the proliferation rate, NORAD and ZNF217 mRNA expression, Ki-67 and ZNF217 protein expression of H460/DDP cells in the miR-199a-3p mimic group were significantly reduced (P<0.05), but the apoptosis rate, miR-199a-3p expression and caspase-9 expression were significantly increased (P<0.05). Compared with the si-NORAD+inhibitor NC group, the proliferation rate, ZNF217 mRNA expression, Ki-67 and ZNF217 protein expression of H460/DDP cells in the si-NORAD+miR-199a-3p inhibitor group were significantly increased (P<0.05), the apoptosis rate, miR-199a-3p expression and caspase-9 expression were obviously increased reduced (P<0.05).

Conclusions: Down-regulating NORAD expression can enhance miR-199a-3p expression and inhibit ZNF217 expression, thereby inhibiting H460/DDP cell proliferation, promoting apoptosis and enhancing its DDP chemotherapy sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476203PMC
http://dx.doi.org/10.3779/j.issn.1009-3419.2023.102.27DOI Listing

Publication Analysis

Top Keywords

lncrna norad
12
proliferation apoptosis
12
lung cancer
12
cells
9
norad proliferation
8
apoptosis chemosensitivity
8
non-small cell
8
cell lung
8
cancer cells
8
expressions norad
8

Similar Publications

Disruption of the Pum2 axis Aggravates neuronal damage following cerebral Ischemia-Reperfusion in mice.

Brain Res

January 2025

Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China. Electronic address:

Stroke remains a leading cause of disability and mortality worldwide, with mitochondrial dysfunction closely linked to ischemic injury. This study explores the Norad-Pum2-Mff axis as a key regulator of mitochondrial function following ischemia-reperfusion (I/R) injury. Using an oxygen-glucose deprivation/reoxygenation (OGD/R) model, Mff protein levels were significantly elevated post-OGD/R, while mRNA levels remained unchanged, suggesting post-transcriptional regulation.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder characterized by the progressive loss of nigrostriatal dopaminergic neurons (DA) which can be caused by environmental and genetic factors. lncRNAs have emerged as an important regulatory layer in neurodegenerative disorders, including PD. In this study, we investigated and validated lncRNAs that may serve as diagnostic or therapeutic targets for PD.

View Article and Find Full Text PDF

Unlabelled: Alzheimer's disease (AD) is a progressive neurological condition that causes brain shrinkage and cell death. This study aimed to identify the role of the NORAD/miR-26b-5p axis in AD. StarBase was used to examine the binding sequences of miR-26b-5p to LncRNA NORAD or its target genes, which were verified by a double luciferase reporter assay.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are pivotal regulators of cellular processes. Here we reveal an interaction between the lncRNA NORAD, noted for its role in DNA stability, and the immune related transcription factor STAT3 in embryonic and differentiated human cells. Results from NORAD knockdown experiments implicate NORAD in facilitating STAT3 nuclear localization and suppressing antiviral gene activation.

View Article and Find Full Text PDF

Background: Carotid artery stenosis (CAS) may cause many cerebrovascular diseases, and a biomarker for screening and monitoring is needed. This study focused on the clinical significance of long-chain non-coding RNA (lncRNA) non-coding RNA activated by DNA damage (NORAD) in patients with CAS and aimed to search for potential biomarkers of CAS.

Methods: Eighty-six asymptomatic patients with CAS and 60 healthy individuals were enrolled, with corresponding clinical data and serum samples collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!