In vertebrate vision, early retinal circuits divide incoming visual information into functionally opposite elementary signals: On and Off, transient and sustained, chromatic and achromatic. Together these signals can yield an efficient representation of the scene for transmission to the brain via the optic nerve. However, this long-standing interpretation of retinal function is based on mammals, and it is unclear whether this functional arrangement is common to all vertebrates. Here we show that male poultry chicks use a fundamentally different strategy to communicate information from the eye to the brain. Rather than using functionally opposite pairs of retinal output channels, chicks encode the polarity, timing, and spectral composition of visual stimuli in a highly correlated manner: fast achromatic information is encoded by Off-circuits, and slow chromatic information overwhelmingly by On-circuits. Moreover, most retinal output channels combine On- and Off-circuits to simultaneously encode, or multiplex, both achromatic and chromatic information. Our results from birds conform to evidence from fish, amphibians, and reptiles which retain the full ancestral complement of four spectral types of cone photoreceptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471707 | PMC |
http://dx.doi.org/10.1038/s41467-023-41032-z | DOI Listing |
Ann Ital Chir
January 2025
Department of Thoracic Surgery, Mindong Hospital Affiliated to Fujian Medical University, 355000 Fu'an, Fujian China.
Aim: This study aimed to explore the efficacy of open reduction and internal fixation assisted by handheld ultrasound combined with three-dimensional (3D) printing technology in treating multiple rib fractures.
Methods: We retrospectively analyzed the clinical data from 84 patients affected with multiple rib fractures admitted to our hospital between August 2022 and April 2024. After excluding four cases, 80 cases were included in this study.
Nature
January 2025
Department of Chemistry, University of Manchester, Manchester, UK.
Cells display a range of mechanical activities generated by motor proteins powered through catalysis. This raises the fundamental question of how the acceleration of a chemical reaction can enable the energy released from that reaction to be transduced (and, consequently, work to be done) by a molecular catalyst. Here we demonstrate the molecular-level transduction of chemical energy to mechanical force in the form of the powered contraction and powered re-expansion of a cross-linked polymer gel driven by the directional rotation of artificial catalysis-driven molecular motors.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
Voltage-gated ion channels (VGICs) are crucial targets for neuropsychiatric therapeutics owing to their role in controlling neuronal excitability and the established link between their dysfunction and neurological diseases, highlighting the importance of identifying modulators with distinct mechanisms. Here we report two small-molecule modulators with the same chemical scaffold, Ebio2 and Ebio3, targeting a potassium channel KCNQ2, with opposite effects: Ebio2 acts as a potent activator, whereas Ebio3 serves as a potent and selective inhibitor. Guided by cryogenic electron microscopy, patch-clamp recordings and molecular dynamics simulations, we reveal that Ebio3 attaches to the outside of the inner gate, employing a unique non-blocking inhibitory mechanism that directly squeezes the S6 pore helix to inactivate the KCNQ2 channel.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
The osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is key for bone formation, and its imbalance leads to osteoporosis. Forkhead Box Protein G1 (FOXG1) is associated with osteogenesis, however, the effect of FOXG1 on osteogenesis of BMSCs and ovariectomy (OVX)-induced bone loss is unknown. In our study, FOXG1 expression in BMSCs increases after osteogenic induction.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Botany, Jiangsu Province, Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Nanjing 210014, China. Electronic address:
WRKY transcription factors (TFs) play pivotal roles in regulating plant nutrient uptake, particularly phosphate (Pi) acquisition, and biosynthesis of secondary metabolites. Euphorbia lathyris, a significant medicinal plant with diverse pharmacological activities, lacks a systematic analysis of WRKY members and their functional roles. In this study, 58 ElWRKY genes were identified in the E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!