A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microplastics and heavy metals in shrimp Litopenaeus vannamei from the SAMARE lagoon, Gulf of California: Is it a case of combined MPs-Zn pollution in gills? | LitMetric

Microplastic (MPs) pollution studies in the coastal environment are increasing, as observed in the growing number of documents published yearly. However, studies regarding the combined effect of MPs and heavy metal (HMs) pollution are scarce, particularly in marine biota. Microplastics and HMs were investigated in the exoskeleton (EX), gills (GI), gastrointestinal tract (GT), and muscle (MU) of the shrimp Litopenaeus vannamei from the Santa María-La Reforma (SAMARE) lagoon, Mexico. Results showed that shrimp ingest mainly MPs of the fiber type (74.7%) and fragments (22.7%). The most frequent MP colors in the four tissues were transparent (61.4%-72.2%) and blue (3.2-36.4%) fibers. Microplastic abundance in the four tissues was 5.5 ± 0.5 MPs per individual. The predominant polymers found in most tissues were cotton and synthetic polyethylene-terephthalate (PET). Heavy metals exhibited wide variability depending on the tissue and metal; the highest Cu concentration in the GI was 138 ± 16 μg/g, while the highest Cd value was 0.40 ± 0.11 μg/g, Ni was 17.0 ± 8.3 μg/g, and Zn was 120 ± 18 μg/g in the GT. The relationship between MPs and HMs was significant and positive (p < 0.05) between MPs and Zn in the GI. This reveals a possible MPs-Zn interaction due to cotton and PET reactivity or is related to polymer manufacture. This study implies that an essential part of the world fisheries is a potential route for MPs and HMs. The problem is exacerbated due to the consumption of whole shrimp tissues consumed by humans. Considering Mexican shrimp consumption, and MPs in this study, the estimated intake was 594 MPs/capita/year. Future research requires MP monitoring in coastal lagoons that support wildlife and important fisheries and assess their effects combined with HMs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.122479DOI Listing

Publication Analysis

Top Keywords

heavy metals
8
shrimp litopenaeus
8
litopenaeus vannamei
8
samare lagoon
8
microplastics heavy
4
metals shrimp
4
vannamei samare
4
lagoon gulf
4
gulf california
4
california case
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!