Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel strategy based on solar photo-Fenton mediated by ferric nitrilotriacetate (Fe-NTA) combined with NaOCl in continuous flow mode for wastewater reclamation has been studied. Escherichia coli (E. coli) inactivation attained ≥ 5 log10-units, meeting the most restrictive EU 2020/741 target (10 CFU/100 mL), and 75% of organic microcontaminant total load was removed. As a remarkable finding, trihalomethanes (THMs) concentration was insignificant, complying by far with the Italian legislation limit. To attain these results, first the effect of liquid depth on E. coli inactivation and imidacloprid (IMD) removal from spiked municipal effluents was evaluated in continuous flow pilot-scale raceway pond reactors at 60-min hydraulic residence time with low reagent concentrations (0.10 mM Fe-NTA, 0.73 mM HO and 0.13 mM NaOCl). Disinfection was due to the bactericidal effect of chlorine. In contrast, liquid depth notably influenced microcontaminant removal, highlighting that operation at 10-cm liquid depth allows achieving treatment capacities higher than at 5 cm (16.50 vs 28.20 mg IMD/m∙day). Next, the monitoring of THMs was carried out to evaluate the generation and degradation of disinfection by-products, along with the removal of actual microcontaminants. These promising results draw attention to the treatment potential and open the way for its commercial application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.132354 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!