Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antibiotic residues accumulation in the environment endangers ecosystems and human health. There is an urgent need for a facile and efficient strategy to detect antibiotics. Here, we report a photoluminescent sensor array based on protein-stabilized gold nanoclusters (AuNCs) for the detection of two families of antibiotics, tetracyclines and quinolones. The nanoclusters were synthesized with bovine serum albumin (BSA) and ovalbumin (OVA), respectively. They had different interactions with seven kinds of antibiotics and exhibited diverse photoluminescence (PL) responses, which were analyzed by linear discriminant analysis and ExtraTrees algorithms. The sensor array performed well in both classification and quantification of seven antibiotics. And the quantitative results of all antibiotics obtained R of no less than 0.99 at 0-100 μM when using suitable regression models. Additionally, the sensor array was able to distinguish antibiotic mixtures and multiple interfering substances, and it also kept 100% classification accuracy in river water samples. Moreover, test paper assisted by a smartphone was applied for quick detection of antibiotics, with good performance in both HEPES buffer and river water. These studies reveal great potential for the point-of-use analysis of antibiotics in environmental monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.125122 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!