Insights into the mechanism underlying UV-B induced flavonoid metabolism in callus of a Tibetan medicinal plant Mirabilis himalaica.

J Plant Physiol

College of Biological Sciences and Biotechnology, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Forest Tree Breeding and Ecological Remediation, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China. Electronic address:

Published: September 2023

Mirabilis himalaica is an important Tibetan medicinal plant in China. However, it has become a rare and class I endangered Tibetan medicine plant. Therefore, the use of callus to propagate germplasm resources is of great significance. We found that the flavonoid content of M. himalaica callus increased continuously with the extension of UV-B treatment. Multi-omics profiles were used to reveal the co-expression patterns of gene networks of flavonoid metabolism in M. himalaica callus during UV-B radiation. Results showed that five medicinal metabolics, including geranin, eriodictyol, astragalin, isoquercetin, pyrotechnic acid, and one anthocyanin malvide-3-O-glucoside were identified. The transcriptome data were divided into 46 modules according to the expression pattern by WGCNA (weighted gene co-expression network analysis), of which the module Turquoise had the strongest correlation with six target metabolites. We found that seven structural genes and twenty-five transcription factors were related to the metabolism of flavonoid synthesis, among which the structural genes CHI, C4H and UGT79B6 had strong co-expression relationships with the 6 target metabolites. WRKY42, WRKY7, bHLH128 and other transcription factors had strong co-expression relationships with multiple structural genes. Consequently, these findings suggest callus grown under UV-B treatment could be an effective alternative medical resource of M. himalaica, which is valuable for conservation and usage of this wild and endangered plant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2023.154074DOI Listing

Publication Analysis

Top Keywords

structural genes
12
flavonoid metabolism
8
tibetan medicinal
8
medicinal plant
8
mirabilis himalaica
8
himalaica callus
8
uv-b treatment
8
target metabolites
8
transcription factors
8
strong co-expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!