Desorption of sulfamethoxazole from polyamide 6 microplastics: Environmental factors, simulated gastrointestinal fluids, and desorption mechanisms.

Ecotoxicol Environ Saf

Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of chemical engineering and technology, Xinjiang University, Urumqi, China. Electronic address:

Published: October 2023

AI Article Synopsis

  • Microplastics can absorb pollutants and, when ingested by organisms, create a dual toxic effect due to these contaminants.
  • The study examined how Sulfamethoxazole (SMX) interacts with Polyamide 6 (PA6) microplastics, focusing on variables like pH and salinity and their impact on adsorption and desorption.
  • Findings suggest that lower pH levels and certain gastrointestinal components enhance the desorption of SMX from PA6 microplastics, offering insights into their behavior in digestive environments.

Article Abstract

Microplastics (MPs) can enrich pollutants after being released into the environment, and the contaminants-loaded MPs are usually ingested by organisms, resulting in a potential dual biotoxic effect. In this paper, the adsorption behavior of Sulfamethoxazole (SMX) on Polyamide 6 (PA6) MPs was systematically investigated and simulated by the kinetic and isotherm models. The effect of environmental conditions (pH, salinity) on the adsorption process was studied, and the desorption behavior of SMX-loaded PA6 MPs was focused on simulating the seawater, ultrapure water, gastric and intestinal fluids. We found that lower pH and solubilization of SMX by gastrointestinal components (bovine serum albumin (BSA), sodium taurocholate (NaT), and pepsin) can reduce the electrostatic interaction between the surface charge of PA6 MPs and SMX. The result will lead to an increase in the desorption capacity of SMX-loaded PA6 MPs in gastrointestinal fluids and therefore will provide a reasonable mechanism for the desorption of SMX-loaded PA6 MPs in the gastrointestinal fluids. This study will provide a theoretical reference for studying the desorption behavior of SMX-loaded PA6 MPs under gastrointestinal conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2023.115400DOI Listing

Publication Analysis

Top Keywords

pa6 mps
24
smx-loaded pa6
16
gastrointestinal fluids
12
mps gastrointestinal
12
mps
8
desorption behavior
8
behavior smx-loaded
8
will provide
8
desorption
6
pa6
6

Similar Publications

Microplastics (MPs) co-exist with plastic additives and other emerging pollutants in the drinking water distribution systems (DWDSs). Due to their strong adsorption capacity, MPs may influence the occurrence of additives in DWDSs. The article investigated the occurrence of typical additives bisphenol A (BPA) and dibutyl phthalate (DBP) in DWDSs under the influence of polyamide 6 (PA6) MPs and further discussed the partitioning of BPA/DBP on PA6s, filling a research gap regarding the impact of adsorption between contaminants on their occurrence within DWDSs.

View Article and Find Full Text PDF

This paper presents a dataset comprising measurements of the sinking dynamics of microplastics settling in artificial seawater (AS) and in dispersions of polymers in seawater: xanthan gum, kappa-carrageenan, and their mixtures in two concentrations: 0.5 g/L and 1 g/L. Plastic particles are classified into fifteen groups representing various shapes: disks, rods, blades, spheres, and materials: PS, POM, PET, PA6.

View Article and Find Full Text PDF

Microplastics (MPs) and pharmaceuticals and personal care products (PPCPs) are two types of emerging contaminants widely present in the global aquatic ecosystem. The ecological risks associated with the coexistence of these two contaminants have garnered increasing attention from researchers. In this study, we selected 15 typical hydrophilic PPCPs, including Sulfacetamide (SA), Thiamphenicol, Florfenicol, Chloramphenicol (CHL), Ampicillin, Cephalexin, Ofloxacin, Fluorouracil, Phenytoin, Theophylline, Cimetidine, Methylparaben, Diethyltoluamide, Benzophenone-2 (BP-2), and Benzophenone-4, as adsorbates.

View Article and Find Full Text PDF

In this study, the sources, abundance, and ecological implications of microplastic (MP) pollution in Volturno, one of the main rivers in southern Italy, were explored by investigating the MP concentration levels in sediments collected along the watercourse. The samples were sieved through 5- and 2-mm sieves and treated with selective organic solvents. The polymer classes polystyrene (PS), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), nylon 6 (PA6), and nylon 6,6 (PA66) were quantified using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) and high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

Upcycling recycled carbon fibers recovered from waste carbon composites can reduce the price of carbon fibers while improving disposal-related environmental problems. This study assessed and characterized recycled carbon fibers subjected to sizing treatment using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (APS) chemically coordinated with polyamide 6 (PA6) and polypropylene (PP) resins. Sizing treatment with 1 wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!