Asymmetric reactions that convert racemic mixtures into enantioenriched amines are of significant importance due to the prevalence of amines in pharmaceuticals, with about 60% of drug candidates containing tertiary amines. Although transition-metal catalyzed allylic substitution processes have been developed to provide access to enantioenriched α-disubstituted allylic amines, enantioselective synthesis of sterically demanding α-tertiary amines with a tetrasubstituted carbon stereocenter remains a major challenge. Herein, we report a chiral diene-ligated rhodium-catalyzed asymmetric substitution of racemic tertiary allylic trichloroacetimidates with aliphatic secondary amines to afford α-trisubstituted-α-tertiary amines. Mechanistic investigation is conducted using synergistic experimental and computational studies. Density functional theory calculations show that the chiral diene-ligated rhodium promotes the ionization of tertiary allylic substrates to form both and π-allyl intermediates. The π-allyl pathway proceeds through a higher energy than the π-allyl pathway. The rate of conversion of the less reactive π-allyl intermediate to the more reactive isomer via π-σ-π interconversion was faster than the rate of nucleophilic attack onto the more reactive intermediate. These data imply that the Curtin-Hammett conditions are met in the amination reaction, leading to dynamic kinetic asymmetric transformation. Computational studies also show that hydrogen bonding interactions between β-oxygen of allylic substrate and amine-NH greatly assist the delivery of amine nucleophile onto more hindered internal carbon of the π-allyl intermediate. The synthetic utility of the current methodology is showcased by efficient preparation of α-trisubstituted-α-tertiary amines featuring pharmaceutically relevant secondary amine cores with good yields and excellent selectivities (branched-linear >99:1, up to 99% enantiomeric excess).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581542PMC
http://dx.doi.org/10.1021/jacs.3c04211DOI Listing

Publication Analysis

Top Keywords

α-trisubstituted-α-tertiary amines
12
amines
9
chiral diene-ligated
8
tertiary allylic
8
computational studies
8
π-allyl pathway
8
π-allyl intermediate
8
allylic
5
π-allyl
5
scope mechanistic
4

Similar Publications

Purpose: The study evaluated the effects of elexacaftor/tezacaftor/ivacaftor (ETI) therapy in people with cystic fibrosis (pwCF) and a clinical history of Aspergillus fumigatus (AF) infection.

Methods: This prospective cohort study included pwCF who initiated ETI therapy and had received antifungal treatment in the preceding five years due to allergic bronchopulmonary aspergillosis (ABPA group) or other AF-related clinical manifestations (AF group). A control group of pwCF with no prior respiratory cultures positive for AF was also included.

View Article and Find Full Text PDF

The embellishing of the macrocycle core with sulfur substituents of varied sterical requirements changes the structural dynamics of chiral, triangular polyimines. Despite their formal high symmetry, these compounds adopt diverse conformations, in which the macrocycle core represents a non-changeable unit. DFT calculations reveal that the mutual arrangement of sulfur-containing substituents is controlled mainly by sterical interactions.

View Article and Find Full Text PDF

De novo shoot regeneration, characterized by the emergence of adventitious shoots from excised or damaged tissues or organs in vitro, is regulated by the complex interplay between genetic and epigenetic regulatory mechanisms. However, the specific effect of histone deacetylation on shoot regeneration remains poorly understood. This study investigated the effects of trichostatin A (TSA), a histone deacetylase inhibitor, on shoot regeneration in callus derived from root explants.

View Article and Find Full Text PDF

A Schiff base of Chitosan was prepared by condensing of the Chitosan (CS) with six aromatic aldehydes and confirmed by FT-IR, NMR, XRD, TGA, and DSC. XRD results showed the disappeared of peaks at 2θ = 10° for CS and appeared one peaks at around 2θ of 23° for Schiff bases, while TGA was demonstrated that the thermal stability of CS has improved after the modification with the corresponding aldehyde. Also, DSC shows endothermal peak of CS at 100 °C due to the loss of water and second thermal event related to the decomposition of amine units with an exothermic peak at 295 °C, while Schiff bases shows endothermal peak around 70-95 °C which is related to the loss of water for all samples and the second exothermic peak around 260-280 °C is related to the decomposition of the amine group in the polymer units.

View Article and Find Full Text PDF

Parasitic structure defect blights sustainability of cobalt-free single crystalline cathodes.

Nat Commun

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.

Recent efforts to reduce battery costs and enhance sustainability have focused on eliminating Cobalt (Co) from cathode materials. While Co-free designs have shown notable success in polycrystalline cathodes, their impact on single crystalline (SC) cathodes remains less understood due to the significantly extended lithium diffusion pathways and the higher-temperature synthesis involved. Here, we reveal that removing Co from SC cathodes is structurally and electrochemically unfavorable, exhibiting unusual voltage fade behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!