Deep learning-based ultra-fast identification of Raman spectra with low signal-to-noise ratio.

J Biophotonics

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, PR China.

Published: January 2024

Ensuring the correct use of cell lines is crucial to obtaining reliable experimental results and avoiding unnecessary waste of resources. Raman spectroscopy has been confirmed to be able to identify cell lines, but the collection time is usually 10-30 s. In this study, we acquired Raman spectra of five cell lines with integration times of 0.1 and 8 s, respectively, and the average accuracy of using long-short memory neural network to identify the spectra of 0.1 s was 95%, and the average accuracy of identifying the spectra of 8 s was 99.8%. At the same time, we performed data enhancement of 0.1 s spectral data by real-valued non-volume preserving method, and the recognition average accuracy of long-short memory neural networks recognition of the enhanced spectral data was improved to 96.2%. With this method, we shorten the acquisition time of Raman spectra to 1/80 of the original one, which greatly improves the efficiency of cell identification.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.202300270DOI Listing

Publication Analysis

Top Keywords

raman spectra
12
cell lines
12
average accuracy
12
accuracy long-short
8
long-short memory
8
memory neural
8
spectral data
8
spectra
5
deep learning-based
4
learning-based ultra-fast
4

Similar Publications

The use of Raman spectroscopy, particularly surface-enhanced Raman spectroscopy (SERS), offers a powerful tool for analyzing biochemical changes in biofluids. This study aims to assess the modifications occurring in saliva collected from patients before and after exposure to cone beam computed tomography (CBCT) and computed tomography (CT) imaging. SERS analysis revealed significantly amplified spectra in post-imaging samples compared to pre-imaging samples, with pronounced intensification of thiocyanate and opiorphin bands, which, together with proteins, dominated the spectra.

View Article and Find Full Text PDF

Tungsten oxide (WO) electrochromic devices are obtaining increasing interest due to their color change and thermal regulation. However, most previous work focuses on the absorption or transmission spectra of materials, rather than the optical parameters evolution in full spectrum in the electrochromic processes. Herein, we developed a systematic protocol of ex situ methods to clarify the evolutions of subtle structure changes, Raman vibration modes, and optical parameters of WO thin films in electrochromic processes as stimulated by dosage-dependent Li insertion.

View Article and Find Full Text PDF

Lighting the Path: Raman Spectroscopy's Journey Through the Microbial Maze.

Molecules

December 2024

Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.

The rapid and precise identification of microorganisms is essential in environmental science, pharmaceuticals, food safety, and medical diagnostics. Raman spectroscopy, valued for its ability to provide detailed chemical and structural information, has gained significant traction in these fields, especially with the adoption of various excitation wavelengths and tailored optical setups. The choice of wavelength and setup in Raman spectroscopy is influenced by factors such as applicability, cost, and whether bulk or single-cell analysis is performed, each impacting sensitivity and specificity in bacterial detection.

View Article and Find Full Text PDF

Investigation on the Coordination Bonding Nature of Actinide-Doped Endohedral Borospherenes An@B (An = U, Np, Pu, Am, Cm).

Molecules

December 2024

Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.

Endohedral metallo-borospherenes M@B have received considerable attention since the discovery of B in 2014. However, the coordination bonding nature of most of actinide-doped endohedral An@B still remains in dispute or unexplored. Extensive and systematic first-principles theory calculations performed herein unveil the ground states of triplet U@B (, , A), quartet U@B (, , B), quintet Np@B (, , A), sextet Np@B (, , A), septet Pu@B (, , A), octet Am@B (, , A), and octet Cm@B (, , A) at the coupled-cluster with triple excitations CCSD(T) level.

View Article and Find Full Text PDF

Mixed Pt-Ni Halide Perovskites for Photovoltaic Application.

Materials (Basel)

December 2024

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.

CsPtI is a promising photoabsorber with a direct bandgap of 1.4 eV and a high carrier lifetime; however, the cost of Pt inhibits its commercial viability. Here, we performed a cost analysis and experimentally explored the effect of replacing Pt with earth-abundant Ni in solution-processed Cs(PtNi)(I,Cl) thin films on the properties and stability of the perovskite material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!