A major portion of phosphatic fertilizer comes from the limiting natural resource, rock phosphate, which demands a timely alternative. Struvite, a crystalline mineral of low solubility, is a worthwhile alternative. Evaluation of the local wastewater streams for their ability to precipitate struvite and its capability as phosphatic fertilizer under an alkaline soil environment was studied. Two stirring speeds, a pH range of 8.0-11.0, and a constant molar ratio were used to optimize local wastewater streams for struvite precipitation. Struvite was used in five different combinations to assess the release of phosphorus (P), including control (no P source), single superphosphate, struvite, struvite + sulfur, and rock phosphate with or without inoculation of sulfur-oxidizing bacteria (SOB). For struvite precipitation, low stirring speeds are ideal because the precipitates readily sink to the bottom once they form. Furthermore, the amalgamation of SOB with sulfur significantly improved P use efficiency under alkaline soils through increased phosphorus sources solubility and enabled optimum wheat production due to its low solubility in an alkaline soil condition. Due to its capacity to recycle phosphorus from wastewater, struvite is poised to emerge as a sustainable fertilizer and had an opportunity to capture a share of this expanding market.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2023.243 | DOI Listing |
PLoS One
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Lower atmospheric pressure affects biologically relevant physical parameters such as gas partial pressure and concentration, leading to increased water vapor diffusivity and greater soil water content loss through evapotranspiration. This might impact plant photosynthetic activity, resource allocation, water relations, and growth. However, the direct impact of low air pressure on plant physiology is largely unknown.
View Article and Find Full Text PDFPhotosynthetica
January 2025
College of Agronomy, Shandong Agricultural University, Tai'an, 271018 Shandong, China.
This study aims to determine the changes in the photosynthetic performance of leaves at different leaf positions and their correlation and to screen out the basic tillage methods suitable for improving the yield. The decrease in soil salt content significantly improved the PSII performance index and quantum yield for electron transport of the bottom leaf group, synergistically enhanced the photosynthetic performance of summer maize leaves (especially the bottom leaf group), and enhanced the correlation between the bottom, middle (including the ear leaf), and upper leaf groups. Under subsoiling tillage conditions, the bottom leaves could produce more carbohydrates to meet the normal growth of the root system, promote the photosynthesis of the middle leaf group at the ear position, and increase the nutrient output of the upper leaf group to the female ear in the middle and later stages of maize aging.
View Article and Find Full Text PDFPhotosynthetica
January 2025
Chengde Bijiashan Ecological Agriculture Technology Development Co., Ltd., 067000 Chengde, Hebei, China.
Application of hyperspectral reflectance technology to track changes in photosynthetic activity in () remains underexplored. This study aimed to investigate the relationship between hyperspectral reflectance and photosynthetic activity in the leaves of in response to a decrease in soil water content. Results demonstrated that the reflectance in both the visible light and near-infrared bands increased in conjunction with reduced soil water content.
View Article and Find Full Text PDFPLoS One
January 2025
Lecturer College of Civil and Traffic Engineering, Henan University of Urban Construction, Ping Dingshan, China.
Moisture content profoundly influences the engineering properties of expansive soil, a critical consideration in various geotechnical applications. This study delves into the intricate relationship between water content and the physical properties of bentonite, a key constituent of expansive soil. Through a comprehensive analysis encompassing fundamental physical properties, rheological characteristics, permeability behavior, and microscopic features, we elucidate the complex interplay between water content and bentonite behavior.
View Article and Find Full Text PDFiScience
January 2025
Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.
This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!