Artificial olfactory systems (AOSs) that mimic biological olfactory systems are of great interest. However, most existing AOSs suffer from high energy consumption levels and latency issues due to data conversion and transmission. In this work, an energy- and area-efficient AOS based on near-sensor computing is proposed. The AOS efficiently integrates an array of sensing units (merged field effect transistor (FET)-type gas sensors and amplifier circuits) and an AND-type nonvolatile memory (NVM) array. The signals of the sensing units are directly connected to the NVM array and are computed in memory, and the meaningful linear combinations of signals are output as bit line currents. The AOS is designed to detect food spoilage by employing thin zinc oxide films as gas-sensing materials, and it exhibits low detection limits for H S and NH gases (0.01 ppm), which are high-protein food spoilage markers. As a proof of concept, monitoring the entire spoilage process of chicken tenderloin is demonstrated. The system can continuously track freshness scores and food conditions throughout the spoilage process. The proposed AOS platform is applicable to various applications due to its ability to change the sensing temperature and programmable NVM cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602532 | PMC |
http://dx.doi.org/10.1002/advs.202302506 | DOI Listing |
Insects
January 2025
Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.
This study assessed the bioconversion efficiency of larvae (BSFL) fed on food waste stored under different conditions, focusing on the nutritional and microbial quality of the resulting larval biomass. Food waste was prepared as a fresh diet (FD) or naturally contaminated and stored at 20-22 °C (OS-T, opened storage-tempered) or under refrigeration, at 5-8 °C (CS-C, closed storage-cooled). Refrigerated, closed storage (CS-C) led to the highest rates of waste reduction (91.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Food Science and Technologies for Sustainable Agro-Food Chain (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, PC, Italy.
This study investigated whether viable cells, dead cells or cell-free supernatants (CFS) were responsible for the biocontrol effect of strains from two important bacterial genera, and , known for their antifungal properties against plant pathogens and food spoilage microorganisms. Specifically, the capability of these strains to produce extracellular hydrolytic enzymes on specified media was assessed, along with their effectiveness in inhibiting the mycelial growth of several phytopathogenic fungi (, , and ) using dual culture plate assays. Results from these inhibition assays revealed that PF05 and LMG 23520 strains were the most effective in suppressing fungal growth, especially .
View Article and Find Full Text PDFFoods
January 2025
Food Studies and Policies Section, Food Safety Department, Dubai Municipality, Dubai P.O. Box 330127, United Arab Emirates.
High-pressure processing (HPP) is used as a non-thermal approach for controlling microbial viability. The purposes of this study were to (i) establish the decimal reduction times (D-values) for pathogenic bacteria during 350 MPa HPP treatment,; (ii) evaluate the impact of 350 MPa HPP on total plate count (TPC), yeasts and molds (YM), and lactic acid bacteria (LAB) in camel milk; (iii) investigate the behavior of several spoilage-causing bacteria during storage at 4 °C and 10 °C for up to 10 d post-HPP treatment; and (iv) assess the effect of HPP on the protein degradation of camel milk. The D-values for , O157:H7, and spp.
View Article and Find Full Text PDFFoods
January 2025
College of Basic Science, Tianjin Agricultural University, Tianjin 300380, China.
The safety and health of food have been persistent concerns, particularly about meat products. Low-temperature meat products refer to those that are processed at lower temperatures. Meat, rich in proteins and other nutrients, is highly susceptible to microbial contamination, leading to spoilage, particularly when processed at lower temperatures that increase storage and transportation requirements.
View Article and Find Full Text PDFFoods
January 2025
School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
The correlation between spoilage bacteria and the degradation of aquatic food quality during chilled storage is substantial. However, our understanding of the precise roles of spoilage bacteria in oyster spoilage remains incomplete. The aim of this study was to explore the role of three dominant spoilage bacteria strains in oyster spoilage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!