Photosynthetic performance under adaxial and abaxial illumination in three Mediterranean Quercus species differing in branch architecture and individual leaf area.

Photosynth Res

Área de Ecología, Facultad de Biología, Universidad de Salamanca, Campus Unamuno s/n, 37071, Salamanca, Spain.

Published: December 2023

Light availability effects on canopy-level carbon balance constitute an especially difficult issue to address, owing to the strong spatial and temporal changes of the light environment within the canopy. One of the least explored aspects in relation to light environment is the interaction between leaf angle and leaf anatomy. The inclination of the leaf may affect the distribution of light between the adaxial and abaxial surface. The purpose of this study is determining the proportions of the leaf area receiving light from the abaxial side in branches of isolated trees in three Mediterranean oaks, as well as the photosynthetic responses to light under adaxial and abaxial illumination. The proportions of the leaf area illuminated from below were low for sun incidence angles near 0° with respect to the main axis of the branch. However, for sun incidence angles about 45°, the proportion of leaves receiving abaxial illumination was considerable. PPFD levels on the sunlit part of the abaxial surface were always lower than those in the upper leaf side, as a consequence of the lower projection efficiency for the leaves facing the sun by the lower side. Light absorptance was also lower on the abaxial side. The differences between both sides of the leaf tended to be stronger for thicker, longer-living leaves. We conclude that mean C assimilation of the canopy is significantly decreased by the presence of leaves facing the sun by the lower side and that this decrease is stronger in evergreen species with thicker leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-023-01045-7DOI Listing

Publication Analysis

Top Keywords

adaxial abaxial
12
abaxial illumination
12
leaf area
12
three mediterranean
8
leaf
8
light environment
8
light adaxial
8
abaxial surface
8
proportions leaf
8
abaxial side
8

Similar Publications

In recent years, as an important part of precision agricultural aviation, the plant protection unmanned aerial vehicle (UAV) has been widely studied and applied worldwide, especially in East Asia. Banana, as a typical large broad-leaved crop, has high requirements for pests and diseases control. The mechanization degree of plant protection management in banana orchard is low.

View Article and Find Full Text PDF

Self-powered Wraparound (Abaxial) Droplet Deposition via a Superhydrophobic Surface Aid.

J Agric Food Chem

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Future Technology College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.

Many diseases and pests are fond of the backs of leaves, making wraparound deposition essential for enhancing agrochemical utilization and minimizing environmental hazards. We present a superhydrophobic surface decorated with fluorinated-SiO nanoparticles on the adaxial (front) side, improving sprayed droplet wraparound behaviors and achieving a 10-fold increase in abaxial (backside) deposition without using an electrostatic sprayer. Solid-liquid contact electrification boosts the positive charge-to-mass ratio of rebound spraying from 17 to 454 nC g, with the abaxial surface acquiring opposite electric charges at kilovolt-level voltages.

View Article and Find Full Text PDF

Bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae poses significant challenges to sustainable cultivation, necessitating eco-friendly management strategies, and this study explores the role of the phylloplane microbiome in disease suppression through metabarcoding, traditional microbiology, and antibacterial screening of microbial candidates. Here, we mapped the phylloplane microbiome of pomegranate cultivar 'Bhagwa' during bacterial blight development using metabarcoding sequencing (2443,834 reads), traditional microbiological methods (nutrient-rich and minimal media), and scanning electron microscopy.

View Article and Find Full Text PDF

In the present study, the rare true bug (Schaefer & Ashlock, 1970), (Hemiptera, Heteroptera, Pentatomomorpha, Pentatomoidea, Saileriolidae), which is endemic to Vietnam, is redescribed and transferred from the genus China & Slater, 1956 to the genus Hsiao, 1964 based on morphological characteristics. Adults and nymphs of this species congregate in groups of several individuals and suck sap from the abaxial side of the leaves of sp. (Lauraceae).

View Article and Find Full Text PDF

Convergent Isobilateral Leaves Increase the Risk for Mangroves Facing Human-Induced Rapid Environmental Changes.

Plant Cell Environ

January 2025

Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China.

Understanding plant adaptations in extreme environments is crucial, as these adaptations often confer advantages for survival. However, a significant gap exists regarding the genetic mechanisms underlying these adaptations and their responses to human-induced rapid environmental change (HIREC). This study addresses the question of whether genetic convergence occurs among plants with similar adaptive features, specifically focusing on isobilateral leaves in mangrove species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!