A Continuation Technique for Maximum Likelihood Estimators in Biological Models.

Bull Math Biol

School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK.

Published: August 2023

Estimating model parameters is a crucial step in mathematical modelling and typically involves minimizing the disagreement between model predictions and experimental data. This calibration data can change throughout a study, particularly if modelling is performed simultaneously with the calibration experiments, or during an on-going public health crisis as in the case of the COVID-19 pandemic. Consequently, the optimal parameter set, or maximal likelihood estimator (MLE), is a function of the experimental data set. Here, we develop a numerical technique to predict the evolution of the MLE as a function of the experimental data. We show that, when considering perturbations from an initial data set, our approach is significantly more computationally efficient that re-fitting model parameters while producing acceptable model fits to the updated data. We use the continuation technique to develop an explicit functional relationship between fit model parameters and experimental data that can be used to measure the sensitivity of the MLE to experimental data. We then leverage this technique to select between model fits with similar information criteria, a priori determine the experimental measurements to which the MLE is most sensitive, and suggest additional experiment measurements that can resolve parameter uncertainty.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471725PMC
http://dx.doi.org/10.1007/s11538-023-01200-0DOI Listing

Publication Analysis

Top Keywords

experimental data
20
model parameters
12
continuation technique
8
data
8
mle function
8
function experimental
8
data set
8
model fits
8
model
6
experimental
6

Similar Publications

Identification and validation of up-regulated TNFAIP6 in osteoarthritis with type 2 diabetes mellitus.

Sci Rep

December 2024

Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Lines of evidence have indicated that type 2 diabetes mellitus (T2DM) is an independent risk factor for osteoarthritis (OA) progression. However, the study focused on the relationship between T2DM and OA at the transcriptional level remains empty. We downloaded OA- and T2DM-related bulk RNA-sequencing and single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) dataset.

View Article and Find Full Text PDF

Collapsible loess soils, known for their significant volume reduction upon the wetting, pose critical challenges in the geotechnical engineering. The estimation of the wetting-induced settlement is crucial for the foundation design and the determination of the negative skin friction on the pile. In this paper, a new method is proposed to estimate the wetting induced collapse from the wetting soil-water characteristic curve (SWCC) and the index properties of the loess soils.

View Article and Find Full Text PDF

Moving beyond word frequency based on tally counting: AI-generated familiarity estimates of words and phrases are an interesting additional index of language knowledge.

Behav Res Methods

December 2024

ETSI de Telecomunicación, Universidad Politécnica de Madrid, Avenida Complutense, 30, 28040, Madrid, Spain.

This study investigates the potential of large language models (LLMs) to estimate the familiarity of words and multi-word expressions (MWEs). We validated LLM estimates for isolated words using existing human familiarity ratings and found strong correlations. LLM familiarity estimates performed even better in predicting lexical decision and naming performance in megastudies than the best available word frequency measures.

View Article and Find Full Text PDF

In this study, long-term and continuous monitoring of atmospheric radon concentration, temperature, air pressure, and humidity was conducted at China Jinping Underground Laboratory. The impacts of temperature, humidity, and air pressure on radon concentration in the experimental environment were specifically examined, along with the potential interactions among these factors. Moreover, Radon data were denoised using Singular Spectrum Analysis (SSA) to reveal factors that might influence changes in radon concentration.

View Article and Find Full Text PDF

Despite being largely spoken and studied by language and cognitive scientists, Italian lacks large resources of language processing data. The Italian Crowdsourcing Project (ICP) is a dataset of word recognition times and accuracy including responses to 130,465 words, which makes it the largest dataset of its kind item-wise. The data were collected in an online word knowledge task in which over 156,000 native speakers of Italian took part.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!