A simple, selective, and eco-friendly synchronous fluorescence approach was introduced for the first time for the concurrent estimation of the anticancer combination therapy of bicalutamide and resveratrol. The method relies on measuring the synchronous fluorescence spectra of bicalutamide and resveratrol at 269 and 320 nm, respectively, using Δλ of 60 nm with ethanol as a green diluting solvent. The procedure was optimized, and the method was then fully validated. Excellent linearity (R  > 0.999) with very low detection limits (0.044 and 2.001 ng/ml) were obtained for both drugs, allowing for their analysis in human plasma. The green profile of the suggested approach was evaluated using the green solvents selecting tool (GSST), spider diagram for greenness index assessment, green analytical process index (GAPI), and Analytical GREEnness (AGREE) metric tools. These assessment metrics confirmed that the developed approach met the maximum number of green requirements, recommending its application as a green substitute for the regular analysis of the concerned drugs in human plasma. The simplicity of sample measurement enables and substantially accelerates the analysis, resulting in lower costs, enhanced procedure accuracy, and lower environmental effect.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.4586DOI Listing

Publication Analysis

Top Keywords

bicalutamide resveratrol
12
human plasma
12
spider diagram
8
diagram greenness
8
synchronous fluorescence
8
green
6
greenness evaluation
4
evaluation metrics
4
metrics assessing
4
assessing synchronous
4

Similar Publications

A simple, selective, and eco-friendly synchronous fluorescence approach was introduced for the first time for the concurrent estimation of the anticancer combination therapy of bicalutamide and resveratrol. The method relies on measuring the synchronous fluorescence spectra of bicalutamide and resveratrol at 269 and 320 nm, respectively, using Δλ of 60 nm with ethanol as a green diluting solvent. The procedure was optimized, and the method was then fully validated.

View Article and Find Full Text PDF

Mammalian DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B, are key DNA methylation enzymes and play important roles in gene expression regulation. Dysregulation of DNMTs is linked to various diseases and carcinogenesis, and therefore except for the two approved anticancer azanucleoside drugs, various non-nucleoside DNMT inhibitors have been identified and reported. However, the underlying mechanisms for the inhibitory activity of these non-nucleoside inhibitors still remain largely unknown.

View Article and Find Full Text PDF

Resveratrol inhibits DHT-induced progression of prostate cancer cell line through interfering with the AR and CXCR4 pathway.

J Steroid Biochem Mol Biol

September 2019

Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea. Electronic address:

Prostate cancer (PCa) is one of the most common malignancies and the second most common cause of cancer-related deaths in men world-wide and is known to be affected by the action of dihydrotestosterone (DHT) via androgen receptor (AR). Resveratrol (Res) as a phytochemical in grapes and red wine has diverse biological effects such as anti-inflammation, anti-oxidation and anti-cancer. CXCR4 as a chemokine receptor has been found to be upregulated in cancer metastasis and has been used as a prognostic marker in various types of cancer, including leukemia, breast cancer, and prostate cancer.

View Article and Find Full Text PDF

Resveratrol (RES) is a natural polyphenol which can be considered as a nutraceutical because of its benefits such as anticancer and antioxidant activity. In this paper, we designed polymer-RES conjugates as anticancer drug carrier for synergistic therapeutic effect in cancer treatment. Bicalutamide (BIC) was used as a model drug to investigate the drug release behaviors and in vitro anticancer performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!