New Medium-Bandgap Nonfused Ring Guest Acceptor with a Higher-Lying LUMO Level Enables High-Performance Ternary Organic Solar Cells.

ACS Appl Mater Interfaces

School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China.

Published: September 2023

AI Article Synopsis

  • Adding a third component to a binary system in organic solar cells (OSCs) can significantly improve power conversion efficiency (PCE), a technique referred to as a ternary strategy.
  • Researchers developed a new small-molecule acceptor called DFTQA-2FIC, which enhances the performance of typical PM6:Y6 blends by improving charge mobility and reducing charge recombination.
  • The optimized ternary OSC using DFTQA-2FIC achieved a PCE of 17.29%, marking a 7.46% increase compared to the previous binary system, underscoring the effectiveness of this approach in boosting solar cell performance.

Article Abstract

Adding another constituent into a binary system, known as a ternary strategy, represents a simple and effective approach to boosting the power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, we have prepared a new nonfused ring small-molecule acceptor with a medium bandgap, named DFTQA-2FIC, which possesses a high-lying lowest unoccupied molecular orbital energy level and a strong intramolecular charge-transfer effect. We elaborately utilized it as a third component in a typical PM6:Y6 blend to obtain high-performance ternary OSCs. The resulting ternary blend film exhibited superior and balanced hole/electron mobility, enhanced favorable aggregation morphology, and reduced charge carrier recombination. Consequently, an optimized ternary OSC presented a distinctly increased PCE of 17.29%, accompanied by synchronous enhancements in crucial parameters, representing a 7.46% improvement over the binary OSC based on PM6:Y6 with a PCE of 16.09%. This study highlights that incorporating DFTQA-2FIC as a third component in a binary system is suitable for optimizing photovoltaic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c06529DOI Listing

Publication Analysis

Top Keywords

nonfused ring
8
high-performance ternary
8
organic solar
8
solar cells
8
binary system
8
third component
8
ternary
5
medium-bandgap nonfused
4
ring guest
4
guest acceptor
4

Similar Publications

Enantioselective Synthesis of Nonfused Eight-Membered O-Heterocycles by Sequential Catalysis.

Org Lett

January 2025

Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

This work describes a chiral bifunctional squaramide/DBU sequential catalytic strategy for the enantioselective synthesis of nonfused chiral eight-membered O-heterocycles through the asymmetric addition of ynones to β,γ-unsaturated α-ketoesters followed by the regio- and diastereoselective cyclization of the adduct intermediates. Mechanistic experiments revealed that an isomerization process should be involved in the ring formation step, and the origin of the high regioselectivity and diastereoselectivity has also been elucidated by the DFT calculations.

View Article and Find Full Text PDF
Article Synopsis
  • Two new nonfused ring electron acceptors were synthesized, showing a unique A-D-A (acceptor-donor-acceptor) structure and demonstrating significant absorption properties in the range of 540 nm to 700 nm.
  • Their fluorescence occurs in the near-IR region, with lifetimes between 75-410 ps, and electrochemical measurements provide insights into their energy levels (HOMO and LUMO).
  • The nonfused NFAs were incorporated into photovoltaic cells, achieving impressive power conversion efficiencies of 10.17% and 14.09%, indicating their potential for simpler applications in organic solar technology.
View Article and Find Full Text PDF

Emergence of Low-Cost and High-Performance Nonfused Ring Electron Acceptors.

Acc Chem Res

December 2024

College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.

Article Synopsis
  • Organic solar cells (OSCs) are lightweight and can be made semitransparent, making them appealing for various applications since the introduction of the bulk heterojunction concept in 1995.
  • Fullerene derivatives were once the go-to electron acceptors for OSCs but have reached a power conversion efficiency (PCE) plateau of around 12% due to limitations like poor light absorption and energy level tunability.
  • Nonfullerene electron acceptors (NFAs), particularly fused-ring electron acceptors (FREAs), have emerged as superior alternatives since 2015, achieving PCEs up to 20% but face challenges in complex and costly synthesis; nonfused ring electron acceptors (NFREAs
View Article and Find Full Text PDF

Terminal Fluorination Modulates Crystallinity and Aggregation of Fully Non-Fused Ring Electron Acceptors for High-Performance and Durable Near-Infrared Organic Photodetectors.

Angew Chem Int Ed Engl

November 2024

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.

High dark current density (J) severely hinders further advancement of near-infrared organic photodetectors (NIR OPDs). Herein, we tackle this grand challenge by regulating molecular crystallinity and aggregation of fully non-fused ring electron acceptors (FNREAs). TBT-V-F, which features fluorinated terminals, notably demonstrates crystalline intensification and a higher prevalence predominance of J-aggregation compared to its chlorinated counterpart (TBT-V-Cl).

View Article and Find Full Text PDF

Fully Non-Fused Ring Electron Acceptors Enable Effective Additive-Free Organic Solar Cells with Enhanced Exciton Diffusion Length.

Small

December 2024

Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.

Low-cost photovoltaic materials and additive-free, non-halogenated solvent processing of photoactive layers are crucial for the large-scale commercial application of organic solar cells (OSCs). However, high-efficiency OSCs that possess all these advantages remain scarce due to the lack of insight into the structure-property relationship. In this work, three fully non-fused ring electron acceptors (NFREAs), DTB21, DTB22, and DTB23, are reported by utilizing a simplified 1,4-di(thiophen-2-yl)benzene (DTB) core with varied alkoxy chain lengths on the thiophene bridge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!