Mechanism of Nitrogen Reduction to Ammonia in a Diiron Model of Nitrogenase.

Inorg Chem

Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.

Published: September 2023

Nitrogenase is a fascinating enzyme in biology that reduces dinitrogen from air to ammonia through stepwise reduction and protonation. Despite it being studied in detail by experimental and computational groups, there are still many unknown factors in the catalytic cycle of nitrogenase, especially related to the addition of protons and electrons and their order. A recent biomimetic study characterized a potential dinitrogen-bridged diiron cluster as a synthetic model of nitrogenase. Using strong acid and reductants, the dinitrogen was converted into ammonia molecules, but details of the mechanism remains unknown. In particular, it was unclear from the experimental studies whether the proton and electron transfer steps are sequential or alternating. Moreover, the work failed to establish what the function of the diiron core is and whether it split into mononuclear iron fragments during the reaction. To understand the structure and reactivity of the biomimetic dinitrogen-bridged diiron complex [(PFeH)(μ-N)] with triphenylphosphine ligands, we performed a density functional theory study. Our computational methods were validated against experimental crystal structure coordinates, Mössbauer parameters, and vibrational frequencies and show excellent agreement. Subsequently, we investigated the alternating and consecutive addition of electrons and protons to the system. The calculations identify a number of possible reaction channels, namely, same-site protonation, alternating protonation, and complex dissociation into mononuclear iron centers. The calculations show that the overall mechanism is not a pure sequential set of electron and proton transfers but a mixture of alternating and consecutive steps. In particular, the first reaction steps will start with double proton transfer followed by an electron transfer, while thereafter, there is another proton transfer and a second electron transfer to give a complex whereby ammonia can split off with a low energetic barrier. The second channel starts with alternating protonation of the two nitrogen atoms, whereafter the initial double proton transfer, electrons and protons are added sequentially to form a hydrazine-bound complex. The latter split off ammonia spontaneously after further protonation. The various reaction channels are analyzed with valence bond and orbital diagrams. We anticipate the nitrogenase enzyme to operate with mixed alternating and consecutive protonation and electron transfer steps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498488PMC
http://dx.doi.org/10.1021/acs.inorgchem.3c02089DOI Listing

Publication Analysis

Top Keywords

electron transfer
16
alternating consecutive
12
proton transfer
12
model nitrogenase
8
dinitrogen-bridged diiron
8
transfer steps
8
mononuclear iron
8
electrons protons
8
reaction channels
8
alternating protonation
8

Similar Publications

Structure-activity relationship of small organic molecule functionalized Bi-based heterogeneous catalysts for electrocatalytic reduction of CO to formate.

J Colloid Interface Sci

January 2025

Chemical Engineering College, Inner Mongolia University of Technology, Aimin street 49 Xincheng District, Hohhot 010051 PR China; Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Aimin street 49, Xincheng District, Hohhot 010051 PR China; Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Aimin street 49 Xincheng District, Hohhot 010051 PR China. Electronic address:

Ligand engineering has proven to be an effective strategy for tuning and controlling the microenvironment of coordinated metal centers, highlighting the critical bridge between the activity and structural features of catalysts during electrocatalytic CO reduction reactions (eCORR). However, the limited availability of diverse organic ligands has hindered the development of novel high-performing electrocatalysts. In contrast, small organic molecules have been widely used in the fabrication of metal complexes due to their well-defined functionalities, low cost, and easy accessibility.

View Article and Find Full Text PDF

Ultrasensitive platform for the determination of biothiols using aggregation-induced emission of gold-cysteine nanosheets.

Biosens Bioelectron

January 2025

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory of Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China. Electronic address:

Highly ordered ultrathin nanosheets (NSs) of Au(I)-Cys were fabricated through aggregation-induced supramolecular self-assembly triggered by an extended agitation in an alkaline environment. The synthesized Au(I)-Cys NSs exhibited intense luminescence and exceptional chirality. Remarkably, additions of biothiols to Au(I)-Cys NSs have significantly enhanced their luminescence emission, and circular dichroism properties coupled with morphological modulations into nanoflowers, nanodendrites, or closely packed aggregates.

View Article and Find Full Text PDF

Microbially mediated iron redox processes for carbon and nitrogen removal from wastewater: Recent advances.

Bioresour Technol

January 2025

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China. Electronic address:

Iron is the most abundant redox-active metal on Earth. The microbially mediated iron redox processes, including dissimilatory iron reduction (DIR), ammonium oxidation coupled with Fe(III) reduction (Feammox), Fe(III) dependent anaerobic oxidation of methane (Fe(III)-AOM), nitrate-reducing Fe(II) oxidation (NDFO), and Fe(II) dependent dissimilatory nitrate reduction to ammonium (Fe(II)-DNRA), play important parts in carbon and nitrogen biogeochemical cycling globally. In this review, the reaction mechanisms, electron transfer pathways, functional microorganisms, and characteristics of these processes are summarized; the prospective applications for carbon and nitrogen removal from wastewater are reviewed and discussed; and the research gaps and future directions of these processes for the treatment of wastewater are also underlined.

View Article and Find Full Text PDF

Plastic pollution in aquatic ecosystems has become a critical global environmental challenge, threatening biodiversity, water quality, and human health. This study investigates macroplastics distribution and characterization in the highly polluted Klang River, Malaysia, and proposes a protocol to compute total macroplastic yield in the river basin. A total of 240 macroplastic items were collected over a 20-km stretch from the river mouth inland, with an average of 0.

View Article and Find Full Text PDF

Electrochemical recovery of zero-valent sulfur (S) from thiourea (TU) wastewater offers a promising waste-to-value strategy that expects to promote the sulfur resource cycle in water treatment but still suffer from electrode poisoning and sulfur over-oxidation. Herein, we designed a metal-free CNT electrochemical membrane for selective oxidation of thiourea and recovery of S. We found that defect sites on the carbon nanotube surface enable direct electron transfer for thiourea oxidation and may form carbon-sulfur bridge bonds, thereby facilitating the generation of S and urea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!