Using transition metal compounds as sulfur hosts is regarded as a promising approach to suppress the polysulfide shuttle and accelerate redox kinetics for lithium-sulfur (Li-S) batteries. Herein, we report that a new kind of compound, electrides (exotic ionic crystalline materials in which electrons serve as anions), is efficient sulfur hosts for Li-S batteries for the first time. Based on the first-principles calculations, we found that two-dimensional (2D) electrides MC (M = Sc, Y) exhibit unprecedentedly strong binding strength toward sulfur species and surface functionalization is necessary to passivate their activity. The 2D electrides modified with the F-functional group exhibit the best performance in terms of the adsorption energy and sulfur reduction process. A comparative study with a nonelectride reveals that the anionic electrons (AEs) of electrides aid in anchoring the soluble polysulfides. These results open an avenue for the application of electrides in Li-S batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c01975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!