Despite advances in management strategy, traumatic brain injury remains strongly associated with neurological impairment and mortality. Management of traumatic brain injury requires careful and targeted management of the physiological consequences which extend beyond the scope of the primary impact to the cranium. Here, we present a review of the principles of its acute management in adults. We outline the procedure which patients are assessed and the critical physiological variables which must be monitored to prevent further neurological damage. We describe current interventional strategies from the context of the underlying physiological mechanisms and recent clinical data and identify persisting challenges in traumatic brain injury management and potential avenues of future progress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996293 | PMC |
http://dx.doi.org/10.1177/17504589231187798 | DOI Listing |
Neurochem Res
January 2025
Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China.
Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (HS) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.
Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Cariology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, 600 077, Chennai, India.
Neurosurg Rev
January 2025
Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600 077, India.
J Head Trauma Rehabil
January 2025
Author Affiliations: Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia (Prof Ponsford and Drs Spitz, Pyman, Carrier, Hicks, and Nguyen); Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (Dr Spitz); TIRR Memorial Hermann Research Center Houston, Texas (Drs Sander and Sherer); and H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine & Harris Health System, Houston, Texas (Drs Sander and Sherer).
Objectives: This study aimed to identify outcome clusters among individuals with traumatic brain injury (TBI), 6 months to 10 years post-injury, in an Australian rehabilitation sample, and determine whether scores on 12 dimensions, combined with demographic and injury severity variables, could predict outcome cluster membership 1 to 3 years post-injury.
Setting: Rehabilitation hospital.
Participants: A total of 467 individuals with TBI, aged 17 to 87 (M = 44.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!