For the application of CO as an energy storage material, a H storage system has been proposed based on the interconversion of CO and formic acid (or formate). However, energy losses are inevitable in the conversion of electrical energy to H as chemical energy (≈70 % electrical efficiency) and H to electrical energy (≈40 % electrical efficiency). To overcome these significant energy losses, we developed a system based on the interconversion of CO and formate for the direct storage and generation of electricity. In this paper, we report an aqueous redox flow battery system using homogeneous Ir catalysts with CO -formate redox pair. The system exhibited a maximum discharge capacity of 10.5 mAh (1.5 Ah L ), capacity decay of 0.2 % per cycle, and total turnover number of 2550 after 50 cycles. During charging-discharging, in situ fluorescence X-ray absorption fine structure spectroscopy based on an online setup indicated that the active species was in a high valence state of Ir .

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202310976DOI Listing

Publication Analysis

Top Keywords

aqueous redox
8
redox flow
8
flow battery
8
based interconversion
8
energy losses
8
electrical energy
8
electrical efficiency
8
energy
6
battery active
4
active material
4

Similar Publications

Aqueous zinc-iodine batteries (AZIBs) are gaining attention as next-generation energy storage systems due to their high theoretical capacity, enhanced safety, and cost-effectiveness. However, their practical application is hindered by challenges such as slow reaction kinetics and the persistent polyiodide shuttle effect. To address these limitations, we developed a novel class of covalent organic frameworks (COFs) featuring electron-rich nitrogen sites with varied density and distribution (N1-N4) along the pore walls.

View Article and Find Full Text PDF

There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.

View Article and Find Full Text PDF

Ampicillin (AMP) ranks third among the top ten most frequently sold antibiotic combinations globally, raising concerns due to its extensive use. Improper disposal practices in agriculture, aquaculture, and healthcare have led to environmental contamination of water sources with elevated AMP levels. Current methods for detecting such contamination are costly, require sophisticated equipment, and depend on skilled personnel and unstable natural receptors.

View Article and Find Full Text PDF

Exploring redox-active electrolytes to boost energy density of carbon-based supercapacitors.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018 China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China. Electronic address:

To boost supercapacitor (SC) energy density, we introduced redox-active molecules into an aqueous HSO electrolyte. Using retrosynthetic analysis, we identified aminoquinones, specifically triaminochlorobenzoquinone (TACBQ), as promising candidates. Characterization via elemental analysis, Fourier Transform Infrared Spectrometer (FT-IR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) confirmed structure of TACBQ.

View Article and Find Full Text PDF

The Mn-based Prussian blue analogs (PBAs) have garnered significant attention due to their high specific capacity, stemming from the unique multi-electron reactions with Na. However, the structural instability caused by multi-ion insertion impacts the cycle life, thus limiting their further application in aqueous sodium-ion batteries (ASIBs). To address this issue, this work employed an in situ epitaxial solvent deposition method to homogeneously grow Ni hexacyanoferrate (NiHCF) on the surface of MnPBA, which can effectively overcome the de-intercalation instability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!