Intratumoral immunotherapy strategies for cancer based on interleukin-12 (IL-12)-encoding cDNA and mRNA are under clinical development in combination with anti-PD-(L)1 monoclonal antibodies. To make the most of these approaches, we have constructed chimeric mRNAs encoding single-chain IL-12 fused to single-chain fragment variable (scFv) antibodies that bind to transforming growth factor β (TGF-β) and CD137 (4-1BB). Several neutralizing TGF-β agents and CD137 agonists are also undergoing early-phase clinical trials. To attain TGF-β and CD137 binding by the constructions, we used bispecific tandem scFv antibodies (taFvs) derived from the specific 1D11 and 1D8 monoclonal antibodies (mAbs), respectively. Transfection of mRNAs encoding the chimeric constructs achieved functional expression of the proteins able to act on their targets. Upon mRNA intratumoral injections in the transplantable mouse cancer models CT26, MC38, and B16OVA, potent therapeutic effects were observed following repeated injections into the tumors. Efficacy was dependent on the number of CD8 T cells able to recognize tumor antigens that infiltrated the malignant tissue. Although the abscopal effects on concomitant uninjected lesions were modest, such distant effects on untreated lesions were markedly increased when combined with systemic PD-1 blockade.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462790PMC
http://dx.doi.org/10.1016/j.omtn.2023.07.026DOI Listing

Publication Analysis

Top Keywords

mrnas encoding
12
intratumoral immunotherapy
8
encoding chimeric
8
cd137 agonists
8
monoclonal antibodies
8
scfv antibodies
8
tgf-β cd137
8
immunotherapy mrnas
4
chimeric protein
4
protein constructs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!