Analysis of biomarkers in geological materials such as shales is very crucial because they can provide useful information on the depositional conditions and environments, organic matter input, thermal maturity as well as the geological age of shales in some cases. The paleoenvironment, and its impact on organic matter enrichment of the shales, plays a vital role in the exploration and development of the resource. Paleoenvironmental reconstruction can be conducted using elemental, isotopic, maceral, and biomarker proxies. However, the literature on the biomarkers for paleoenvironment reconstruction to reveal the organic matter enrichment of shales in many petroleum systems throughout the world is still insufficient. Hence, this paper seeks to critically review the application of biomarkers during paleoenvironmental reconstruction in shales. The uses of biomarkers as indicators of modern and ancient marine and brackish/saline lacustrine depositional environments are considered. This review shows that biomarkers could be used to establish the sedimentary depositional environments, redox conditions, and organic matter enrichments of shales that are critical to deep energy exploitation. Nevertheless, despite the fact that biomarkers are significant indicators of depositional conditions, secondary processes such as source facies, thermal maturity, migration, and reservoir alteration can greatly influence their uses as paleoenvironmental condition indicators in source rocks and oils. Hence, for a reliable paleoenvironmental evaluation, there is a need to combine isotopic, elemental and maceral proxies with biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464518PMC
http://dx.doi.org/10.1039/d3ra04435aDOI Listing

Publication Analysis

Top Keywords

organic matter
20
matter enrichment
12
biomarkers paleoenvironmental
8
reveal organic
8
deep energy
8
depositional conditions
8
thermal maturity
8
enrichment shales
8
paleoenvironmental reconstruction
8
biomarkers indicators
8

Similar Publications

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Our objectives were to use a quantitative literature review to explore dietary and feed factors influencing apparent total-tract digestibility of dry matter (DMD), crude protein (CPD), neutral detergent fiber (NDFD), ether extract (EED), non-structural carbohydrates (NSCD), non-fiber carbohydrates (NFCD), and residual organic matter (rOMD) in equine diets, and to assess their contributions to digestible energy (DE) supplies. Data from 54 studies were modeled using linear mixed-effect regressions, with publication as a random effect to account for study variability. For each nutrient, five models were derived with explanatory variables including: dry matter intake (DMI; % BW/day) and DM (% as-fed), and dietary components (CP, organic matter, EE, NDF, acid detergent fiber, NSC, starch, and NFC as % of DM), and feed types (forage, non-forage fiber, legumes, cereal, and oil proportions).

View Article and Find Full Text PDF

The natural product micheliolide promotes the nuclear translocation of GAPDH via binding to Cys247 and induces glioblastoma cell death in combination with temozolomide.

Biochem Pharmacol

January 2025

College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China. Electronic address:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is significantly upregulated in glioblastoma (GBM) and plays a crucial role in cell apoptosis and drug resistance. Micheliolide (MCL) is a natural product with a variety of antitumour activities, and the fumarate salt form of dimethylamino MCL (DMAMCL; commercial name ACT001) has been tested in clinical trials for recurrent GBM; this compound suppresses the proliferation of GBM cells by rewiring aerobic glycolysis. Herein, we demonstrated that MCL directly targets GAPDH through covalent binding to the cysteine 247 (Cys247) residue.

View Article and Find Full Text PDF

The role of sulfidated zero-valent iron in enhancing anaerobic digestion of waste activated sludge.

J Environ Manage

January 2025

Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China. Electronic address:

Zero-valent iron (ZVI) has been confirmed in enhancing methane production by improving interspecies electron transfer during anaerobic digestion (AD) of waste activated sludge (WAS). In this study, we suppose that sulfidated zero-valent iron (S-ZVI), a semiconductor material, has better property of electron transfer in AD process. Based on two-phase anaerobic digestion process, nitrite and S-ZVI were used separately for improving acidogenic phase and methanogenic phase of anaerobic sludge digestion.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is known to be the main component of the mineral part of bones. Due to its properties HA is studied for various applications such as bone graft, drug carrier, heterogeneous catalyst or sorbent for waste water treatment. HA can be synthesized or valorized from bone wastes, as the food industry produce billions of kilograms of animal bones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!