Molecular Design Strategy of Protein Isoform-Specific Fluorescent Probes by Considering Molecule in Its Entirety.

Anal Chem

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

Published: September 2023

Generally, different isoforms of proteins exert separate biological functions. However, due to similar structures and identical catalysis functions, distinguishing isoforms is challenging. Summarizing a molecular design strategy has great significance in developing a protein-specific fluorescent probe. Usually, recognition of a group was deemed to be the key to a protein isoform-specific response. However, some novel literature reported that fluorophore could play a vital role in the protein isoform-specific response. It means that any part of the fluorescent probe could affect the detected properties. In this work, we report the generation of the first probe to specifically recognize HexA(β--acetylhexosaminidase A), Hex-C4, by adjusting the length of the linker. Hex-C4 exhibits specific recognition of HexA both in vitro and in living cells. The integration of the fluorescent spectrum and the MD (molecular dynamics) results provide two factors for the molecular design of isoform-specific fluorescent probes. One is the interaction between tetraphenyl ethylene (AIE fluorogen) and amino acid residues, and the other is the interaction between amino acid residues and the binding group. In this work, a powerful tool to detect HexA in living cells is reported for the first time. Further, a workable molecular design strategy for protein isoform-specific fluorescent probes is summarized.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c00707DOI Listing

Publication Analysis

Top Keywords

molecular design
16
protein isoform-specific
16
design strategy
12
isoform-specific fluorescent
12
fluorescent probes
12
strategy protein
8
fluorescent probe
8
isoform-specific response
8
living cells
8
amino acid
8

Similar Publications

Development of targeted antimicrobial peptides for Escherichia coli: Combining phage display and rational design for food safety application.

Food Chem

December 2024

Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China. Electronic address:

The growing demand for minimally processed foods has heightened the risk of pathogenic contamination. Balancing antimicrobial efficacy with the preservation of probiotic activity remains a significant challenge. In this study, we employed phage display peptide library screening, combined with next-generation sequencing to identify the HIMPIQA domain, which selectively targets pathogenic Escherichia coli (E.

View Article and Find Full Text PDF

Here, we present a protocol to alter the production of alternatively spliced mRNA variants, without affecting the overall gene expression, through CRISPR-Cas9-engineered genomic mutations in mice. We describe steps for designing guide RNA to direct Cas9 endonuclease to consensus splice sites, producing transgenic mice through pronuclear injection, and screening for desired mutations in cultured mammalian cells using a minigene splicing reporter. Splice isoform-specific mouse mutants provide valuable tools for genetic analyses beyond loss-of-function and transgenic alleles.

View Article and Find Full Text PDF

Afforestation projects on saline land, using Eucalyptus trees and ectomycorrhizal fungi, are crucial for restoring affected areas and promoting ecological and economic benefits, particularly in saline-affected areas. This study was conducted to isolate Pisolithus sp. and estimate its potential to improve the growth performance of Eucalyptus globulus seedlings under salt-stress conditions.

View Article and Find Full Text PDF

COVID-19 has proved to be a global health crisis during the pandemic, and the emerging JN.1 variant is a potential threat. Therefore, finding alternative antivirals is of utmost priority.

View Article and Find Full Text PDF

A series of novel phenylamino quinazolinone derivatives were designed and synthesized as potential tyrosinase inhibitors. Among these compounds, 9r emerged as the most potent derivative, exhibiting IC values of 17.02 ± 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!