In the last decade, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM)-based cell therapy has drawn broad attention as a potential therapy for treating injured hearts. However, mass production of hiPSC-CMs remains challenging, limiting their translational potential in regenerative medicine. Therefore, multiple strategies including cell cycle regulators, small molecules, co-culture systems, and epigenetic modifiers have been used to improve the proliferation of hiPSC-CMs. On the other hand, the immaturity of these proliferative hiPSC-CMs could lead to lethal arrhythmias due to their limited ability to functionally couple with resident cardiomyocytes. To achieve functional maturity, numerous methods such as prolonged culture, biochemical or biophysical stimulation, in vivo transplantation, and 3D culture approaches have been employed. In this review, we summarize recent approaches used to promote hiPSC-CM proliferation, and thoroughly review recent advances in promoting hiPSC-CM maturation, which will serve as the foundation for large-scale production of mature hiPSC-CMs for future clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469435 | PMC |
http://dx.doi.org/10.1186/s13287-023-03470-w | DOI Listing |
Cell Discov
January 2025
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential.
View Article and Find Full Text PDFStem Cell Res
January 2025
Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India. Electronic address:
PGK1 (phosphoglycerate kinase-1) is required for ATP production in the body. Mutation in the PGK1 gene causes a rare, inherited metabolic disorder causing deficiency of enzyme PGK1, leading to hemolytic anemia, neurological symptoms, and muscle weakness. We generated induced pluripotent stem cells (iPSCs) from a patient carrying a PGK1 variant by isolating fibroblasts from skin punch biopsy and reprogramming using CytoTune iPS 2.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States of America.
The hERG1 potassium channel conducts the cardiac repolarizing current, IKr. hERG1 has emerged as a therapeutic target for cardiac diseases marked by prolonged actional potential duration (APD). Unfortunately, many hERG1 activators display off-target and proarrhythmic effects that limit their therapeutic potential.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Texas Medical Branch, Galveston, TX, USA
Background: Alzheimer’s disease (AD), the most common type of dementia, affects at least twenty‐four million people globally, yet, the causation, mechanisms of progression, and therapeutic strategies remain elusive. Currently, tRNA‐derived RNA fragments (tRFs), a family of recently discovered small non‐coding RNAs (sncRNAs), have surfaced as promising biomarkers for many diseases, including AD. Our work revealed that several AD‐impacted tRFs in human hippocampus, CSF, and serum.
View Article and Find Full Text PDFBackground: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer’s disease (AD). encodes the retromer‐associated receptor SORLA that plays an essential role in recycling of AD‐associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic variants are associated with AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!