The discharge of raw industrial, agricultural, and domestic wastes leads to an increase in heavy metal (HM) burden and detergents in aquatic environs, which can have destructive effects on aquatic organisms. Agarophyte Gracilaria corticata, a major component of seaweed flora of the southern coast of Iran (Bushehr) that contains agar and red pigments, is one of the economically valuable red marine algae. Agar is one of the important polysaccharides with high economic value, widely used in pharmaceutical, medicinal, and cosmetic product manufacturing industries. The aim of this work was to investigate the effect of 5 HMs and two common surfactants in household and industrial detergents on the agar yield, appearance color, and the red algae's phycoremediation potential against HMs. The metal ions were Zn(II), Cu(II), Ni(II), Mn(II), and Cr(VI), and the surfactants were HEDP and CAPB. The analysis results of samples cultured for 60 days in seawater and polluted environments showed that G. corticata can accumulate copper and nickel. In the presence of detergents without HMs, the amount of extracted agar significantly increased compared to the control sample with no change in algae color. But with increasing concentration of HMs, the amount of agar in seaweed samples decreased significantly, and the algae discolored from red to dark green or yellowish-green color (signs of death in the algae). These results show that increasing of HM pollution and detergents can lead to toxicological effects and reduce the species diversity of red seaweeds in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-29427-3DOI Listing

Publication Analysis

Top Keywords

phycoremediation potential
8
agar yield
8
gracilaria corticata
8
heavy metal
8
hms amount
8
agar
6
red
6
detergents
5
potential agar
4
yield red
4

Similar Publications

Modulation of Zn Ion Toxicity in L. by Phycoremediation.

Plants (Basel)

January 2025

Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.

Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.

View Article and Find Full Text PDF

Innovative strategies for utilizing microalgae as dual-purpose biofertilizers and phycoremediators in agroecosystems.

Biotechnol Rep (Amst)

March 2025

Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, University of Malaya, Jalan Pantai Baharu, Kuala Lumpur, 59990, Malaysia.

The increasing need for sustainable agricultural practices due to the overuse of chemical fertilizers has prompted interest in microalgae as biofertilizers. This review investigates the potential of microalgae as biofertilizers and phycoremediators within sustainable agroecosystems, addressing both soil fertility and wastewater management. Microalgae provide a dual benefit by absorbing excess nutrients and contaminants from wastewater, generating nutrient-rich biomass that can replace chemical fertilizers and support plant growth.

View Article and Find Full Text PDF

Evaluating value-added biochemical and biodiesel production from Chlorococcum humicolo algal biomass in phycoremediation of textile dye effluents.

Bioresour Technol

December 2024

Department of Biotechnology, Sathyabama Institute of Science and Technology, Deemed to be University, Chennai 600 119, Tamil Nadu, India.

This study investigates the potentials of Chlorococcum humicolo algal biomass for the extraction of valuable biochemical and biodiesel production, with focus on the phycoremediation of textile dye effluents. The alga was cultivated in three media: CFTRI medium, combined dye effluent, and dye bath effluent in the laboratory. The highest cell count (254 × 10 cells/ml) and lowest oil content (16.

View Article and Find Full Text PDF

The current study investigated the enhancement of biomass in S. obliquus, using rice bran oil processing (RBOP) wastewater in different RBOP wastewater concentrations, while also aiming to produce biofuel and treat the wastewater simultaneously. The strain was grown in Blue Green-11 (BG11) media as well as RBOP wastewater at different wastewater concentrations with distilled water at 10%, 25%, 50%, 75%, and 100% under controlled experimental settings.

View Article and Find Full Text PDF

With the advent of numerous reports related to health and environmental hazards associated with microplastics (MPs), scientists have been engrossed in developing sustainable technologies for MP mitigation. Conventional methods for the remediation of MPs have several limitations, but with the increasing demand for biological mitigation methods, the latest technologies are prioritized. Among biological-driven methods, phytoremediation and phycoremediation are the two peaking approaches that have gained momentum because of their eco-friendliness, cost-effectiveness, and recyclability options.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!