Purpose: The present study investigated the biomechanical stability of three miniplate osteosynthesis configurations used for internal fixation of bilateral mandibular angle fracture (BMAF).
Methods: Standard fracture lines were created in 72 polyurethane mandibles and stabilized with 2.0-mm, 4-hole standard titanium miniplates and monocortical screws. The group descriptions and miniplate configurations were: 2Plates (1-1), 3Plates (1-2) and 4Plates (2-2). The mandibles were subjected to either incisal or molar loads (from both sides in the 3Plates group) up to a force of 120 N. The displacements of the constructs were recorded at each force increment of 10 N. ANOVA and Tukey's post-hoc tests were used for statistical analysis.
Results: The 2Plates group showed higher displacement under both loading conditions (P < 0.05 for each). The same group reached displacement levels of 1 mm and 3 mm during molar loading and 1 mm, 3 mm, and 5 mm during incisal loading at lower force magnitudes relative to others (P < 0.05 for each).
Conclusion: Bone-plate constructs for BMAFs stabilized with three or four standard miniplates are more likely to provide similar resistance when subjected to incisal or molar loads, in contrast to the two-miniplate configuration, which is relatively more prone to displacement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2334/josnusd.23-0164 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!