Aniline is a priority pollutant that is unfavorable to the environment and human health due to its carcinogenic and mutagenic nature. The performance of the dielectric barrier discharge reactor was examined based on the aniline degradation efficiency. Different parameters were studied and optimized to treat various wastewater conditions. Role of active species for aniline degradation was investigated by the addition of inhibitors and promoters. The optimum conditions were 20 mg/L initial concentration, 1.8 kV applied voltage, 4 L/min gas flow rate and a pH of 8.82. It was observed that 87% of aniline was degraded in 60 min of dielectric barrier discharge treatment at optimum conditions. UV-Vis spectra showed gradual increase in the treatment efficiency of aniline with the propagation of treatment time. Mineralization of AN was confirmed by TOC measurement and a decrease in pH during the process. To elicit the aniline degradation route, HPLC and LC-MS techniques were used to detect the intermediates and byproducts. It was identified that aniline degraded into different organic byproducts and was dissociated into carbon dioxide and water. Comparison of the current system with existing advanced oxidation processes showed that DBD has a remarkable potential for the elimination of organic pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117015DOI Listing

Publication Analysis

Top Keywords

dielectric barrier
12
barrier discharge
12
aniline degradation
12
aniline
8
optimum conditions
8
aniline degraded
8
efficient degradation
4
degradation mineralization
4
mineralization aniline
4
aniline aqueous
4

Similar Publications

Silicon (Si) is considered a promising anode material for next-generation lithium-ion batteries due to its high theoretical specific capacity and earth-abundancy. However, challenges such as significant volume expansion, unstable solid electrolyte interphase (SEI) formation in incompatible electrolytes, and slow lithium-ion transport lead to its poor cycling and rate performance. In this work, it is demonstrated that superior cyclability and rate capability of Si anodes can be achieved using ethyl fluoroacetate (EFA) and fluoroethylene carbonate (FEC) solvents with low binding energy with Li but with sufficiently high relative dielectric constants.

View Article and Find Full Text PDF

Self-adaptive dielectrics (SADs), with the characteristics of rapid charge dissipation in electric field distortion, is regarded as the future material for package insulation of advanced electronic devices. The current landscape of SADs is incapable to achieve tunable nonlinear electrical conductivity and threshold field strength due to the inherent Schottky barrier, significantly limiting the application scenarios of SADs. Here, a strategy is reported to construct a stepped Schottky barrier through virus-like structures, which are composed of subminiature metal particles and semiconductor microspheres.

View Article and Find Full Text PDF

Efficient degradation of ciprofloxacin in water using nZVI/g-CN enhanced dielectric barrier discharge plasma process.

Environ Res

January 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China. Electronic address:

Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-CN)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP).

View Article and Find Full Text PDF

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

Surface Hydrophilic Modification of Polypropylene by Nanosecond Pulsed Ar/O Dielectric Barrier Discharge.

Materials (Basel)

December 2024

College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China.

Polypropylene (PP) membranes have found diverse applications, such as in wastewater treatment, lithium-ion batteries, and pharmaceuticals, due to their low cost, excellent mechanical properties, thermal stability, and chemical resistance. However, the intrinsic hydrophobicity of PP materials leads to membrane fouling and filtration flux reduction, which greatly hinders the applications of PP membranes. Dielectric barrier discharge (DBD) is an effective technique for surface modification of materials because it generates a large area of low-temperature plasma at atmospheric pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!