In multicellular lives, the differentiation of stem cells and progenitor cells is often accompanied by a transition from glycolysis to mitochondrial oxidative phosphorylation (OXPHOS). However, the underlying mechanism of this metabolic transition remains largely unknown. In this study, we investigate the role of mechanical stress in activating OXPHOS during differentiation of the female germline cyst in Drosophila. We demonstrate that the surrounding somatic cells flatten the 16-cell differentiating cyst, resulting in an increase of the membrane tension of germ cells inside the cyst. This mechanical stress is necessary to maintain cytosolic Ca concentration in germ cells through a mechanically activated channel, transmembrane channel-like. The sustained cytosolic Ca triggers a CaMKI-Fray-JNK signaling relay, leading to the transcriptional activation of OXPHOS in differentiating cysts. Our findings demonstrate a molecular link between cell mechanics and mitochondrial energy metabolism, with implications for other developmentally orchestrated metabolic transitions in mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843713PMC
http://dx.doi.org/10.1016/j.devcel.2023.08.007DOI Listing

Publication Analysis

Top Keywords

germ cells
12
mitochondrial energy
8
energy metabolism
8
mechanical stress
8
cells
6
mechanical stimulation
4
stimulation surrounding
4
surrounding tissue
4
tissue activates
4
activates mitochondrial
4

Similar Publications

Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.

View Article and Find Full Text PDF

Genital tract infections are common causes of male infertility, and most of diagnosed men are asymptomatic. This study examined the effect of gallic acid (GA) against lipopolysaccharide (LPS)-induced testicular inflammation. Thirty-two Spraque Dawley, 2.

View Article and Find Full Text PDF

Polyphenols as a strategy for improving male reproductive system.

Mol Biol Rep

January 2025

Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.

Reproduction in males is one of the complicated processes that is mediated by many environmental factors, as well as by diet (e.g. supplements, nutritional value).

View Article and Find Full Text PDF

It has been debated whether endometriosis (EMS) adversely affects oocyte quality, potentially leading to a higher incidence of genetically unbalanced embryos or other egg factors that affect the developmental potential. In this study, we explored the effects of endometriosis on risk of chromosomally aberrant in miscarried products of conception (POC) after assisted reproductive treatment (ART), including fresh and frozen cycles. Miscarried POCs were collected from EMS patients (N = 102) and non-EMS patients (N = 441).

View Article and Find Full Text PDF

Generation of induced pluripotent stem cell line from a patient with long COVID.

Stem Cell Res

January 2025

Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA; Baszucki Family Vascular Surgery Biobank, USA; Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, CA, USA. Electronic address:

Long COVID, or post-acute sequelae of SARS-CoV-2 infection, leads to vascular dysfunction, which contributes to the chronic multi-organ damage often seen in affected patients. Long COVID, a global health concern is associated with increased thrombotic risk, also known as COVID-19-associated coagulopathy (CAC). Here, we derived an induced pluripotent stem cell (iPSC) line from peripheral blood mononuclear cells (PBMCs) of a long COVID patient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!