A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated cross-sectional view selection in CT angiography of aortic dissections with uncertainty awareness and retrospective clinical annotations. | LitMetric

Surveillance imaging of patients with chronic aortic diseases, such as aneurysms and dissections, relies on obtaining and comparing cross-sectional diameter measurements along the aorta at predefined aortic landmarks, over time. The orientation of the cross-sectional measuring planes at each landmark is currently defined manually by highly trained operators. Centerline-based approaches are unreliable in patients with chronic aortic dissection, because of the asymmetric flow channels, differences in contrast opacification, and presence of mural thrombus, making centerline computations or measurements difficult to generate and reproduce. In this work, we present three alternative approaches - INS, MCDS, MCDbS - based on convolutional neural networks and uncertainty quantification methods to predict the orientation (ϕ,θ) of such cross-sectional planes. For the monitoring of chronic aortic dissections, we show how a dataset of 162 CTA volumes with overall 3273 imperfect manual annotations routinely collected in a clinic can be efficiently used to accomplish this task, despite the presence of non-negligible interoperator variabilities in terms of mean absolute error (MAE) and 95% limits of agreement (LOA). We show how, despite the large limits of agreement in the training data, the trained model provides faster and more reproducible results than either an expert user or a centerline method. The remaining disagreement lies within the variability produced by three independent expert annotators and matches the current state of the art, providing a similar error, but in a fraction of the time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107365DOI Listing

Publication Analysis

Top Keywords

chronic aortic
12
aortic dissections
8
patients chronic
8
limits agreement
8
aortic
5
automated cross-sectional
4
cross-sectional view
4
view selection
4
selection angiography
4
angiography aortic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!