Protein adsorption plays a key role in membrane fouling in liquid processing, but the specific underlying molecular mechanisms of β-lactoglobulin adsorption on ceramic silica surfaces in premix membrane emulsification have not been investigated yet. In this study, we aimed to elucidate the β-lactoglobulin adsorption and its effect on the premix membrane emulsification of β-lactoglobulin-stabilized oil-in-water emulsions. In particular, the conformation, molecular interactions, layer thickness, surface energy of the adsorbed β-lactoglobulin and resulting droplet size distribution are investigated in relation to the solvent properties (aggregation state of β-lactoglobulin) and the treatment of the silica surface (hydrophilization). The β-lactoglobulin adsorption is driven by attractive electrostatic interactions between positively charged amino acid residues, i.e., lysin and negatively charged silanol groups, and is stabilized by hydrophobic interactions. The strong negative charges of the treated silica surfaces result in a high apparent layer thickness of β-lactoglobulin. Although the conformation of the adsorbed β-lactoglobulin layer varies with membrane treatment and the solvent properties, the β-lactoglobulin adsorption offsets the effect of hydrophilization of the membrane so that the surface energies after β-lactoglobulin adsorption are comparable. The resulting droplet size distribution of oil-in-water emulsions produced by premix membrane emulsification are similar for treated and untreated silica surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.08.103 | DOI Listing |
Langmuir
January 2025
Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Tokyo, Hachioji 192-0015, Japan.
The two-dimensional interlayer space of layered materials has been highlighted due to their adsorption property, whose nanostructure in the water-immersed state is scarcely understood by experiment. Recent developments in molecular simulation have enabled researchers to investigate the interlayer structure, but water content is necessary for accurate modeling. In the present study, we proposed a theoretical method to estimate the saturated water content and adsorption selectivity of trichlorophenol and phenol in montmorillonite modified with hexadecyltrimethylammonium ions.
View Article and Find Full Text PDFLangmuir
January 2025
Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
The amount of incorporation of linear alcohols and ethers in HSiWO·6HO (HSiW·6HO, 50 wt %) supported on silica (SiO) was estimated by a conventional volumetric method and infrared (IR) spectroscopy, and the state of involved molecules was elucidated. First, the attribution of the key IR band at 2200 cm, which was observed for the water of crystallization of HSiW·6HO, to HO species (protons) was verified by coincident observation of thermogravimetric-differential thermal analysis, X-ray diffraction (XRD), and IR spectroscopy during thermal treatment in addition to the isotope exchange with DO. The 2200 cm band was gradually decreased in intensity by increasing the amount of adsorption of pyridine and was totally consumed at saturation, while the volumetric method provided the accurate number of included pyridine molecules.
View Article and Find Full Text PDFRSC Adv
January 2025
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences Taiyuan 030001 China
The research and development of the green synthesis route of chemicals has become the focus of research in academia and industry. At present, the highly efficient oxidation of ethanol to acetaldehyde over non-precious metal catalysts under mild conditions is most promising, but remains a big challenge. Herein, the Mo-Sn oxide catalyst was designed to successfully realize low-temperature oxidation of ethanol to acetaldehyde, achieving an acetaldehyde selectivity of 89.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland.
Accurately quantifying specific proteins from complex mixtures like cell lysates, for example, during in vivo studies, is difficult, especially for aggregation-prone proteins. Herein, we describe the development of a specific protein quantification method that combines a solid-state dot blot approach with radiolabel detection via liquid scintillation counting. The specific detection with high sensitivity is achieved by using the Twin-Strep protein affinity tag and tritium-labeled Strep-TactinXT probe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!