CD19-negative relapse is a leading cause of treatment failure after chimeric antigen receptor (CAR) T-cell therapy for acute lymphoblastic leukemia. We investigated a CAR T-cell product targeting CD19 and CD22 generated by lentiviral cotransduction with vectors encoding our previously described fast-off rate CD19 CAR (AUTO1) combined with a novel CD22 CAR capable of effective signaling at low antigen density. Twelve patients with advanced B-cell acute lymphoblastic leukemia were treated (CARPALL [Immunotherapy with CD19/22 CAR Redirected T Cells for High Risk/Relapsed Paediatric CD19+ and/or CD22+ Acute Lymphoblastic Leukaemia] study, NCT02443831), a third of whom had failed prior licensed CAR therapy. Toxicity was similar to that of AUTO1 alone, with no cases of severe cytokine release syndrome. Of 12 patients, 10 (83%) achieved a measurable residual disease (MRD)-negative complete remission at 2 months after infusion. Of 10 responding patients, 5 had emergence of MRD (n = 2) or relapse (n = 3) with CD19- and CD22-expressing disease associated with loss of CAR T-cell persistence. With a median follow-up of 8.7 months, there were no cases of relapse due to antigen-negative escape. Overall survival was 75% (95% confidence interval [CI], 41%-91%) at 6 and 12 months. The 6- and 12-month event-free survival rates were 75% (95% CI, 41%-91%) and 60% (95% CI, 23%-84%), respectively. These data suggest dual targeting with cotransduction may prevent antigen-negative relapse after CAR T-cell therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2023020621DOI Listing

Publication Analysis

Top Keywords

car t-cell
20
t-cell therapy
12
car
9
prevent antigen-negative
8
antigen-negative relapse
8
relapse car
8
acute lymphoblastic
8
lymphoblastic leukemia
8
75% 95%
8
relapse
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!