One-Step Synthesis of Fragment-Reduced Graphene Oxide as an Electrode Material for Supercapacitors.

ACS Appl Mater Interfaces

Department of Environment and Energy System, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.

Published: September 2023

We herein report for the first time a simple environmentally friendly hydrothermal method for one-step synthesis of fragment-reduced graphene oxide (FrGO) under mild conditions without the addition of reducing agents, and we applied it as an electrode material for a supercapacitor. The characterization results show that the introduction of AlO as a spacer and HCl as an etchant results in a macroporous/mesoporous structure, increases the fragmentation of the FrGO microtopography, shortens the electron/ion transport path, and increases the contact between the electrode material and the electrolyte. Compared to the traditional hydrothermal reduced graphene materials, FrGO shows a larger specific capacitance. The results indicate that suitable hydrothermal temperature and time can effectively promote the retention of more oxygen-containing functional groups on the graphene surface. The first-principles density functional theory (DFT) calculation results show that the electrostatic potential in carbonyl group graphene is more negative, favored by the H adsorption, and provides the system with a pseudocapacitive effect. Under optimized conditions, FrGO (1:4, 180 °C, 3 h) exhibits 417 F/g at 1 A/g with an outstanding capacitance retention of 78.51% at 50 A/g and exhibits remarkable stability over 20 000 charge/discharge cycles. The proposed FrGO-based synthesis method can be used to guide the development of electrode materials for various supercapacitor devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c05764DOI Listing

Publication Analysis

Top Keywords

electrode material
12
one-step synthesis
8
synthesis fragment-reduced
8
fragment-reduced graphene
8
graphene oxide
8
graphene
5
electrode
4
oxide electrode
4
material supercapacitors
4
supercapacitors report
4

Similar Publications

Organic compounds present promising options for sustainable zinc battery electrodes. Nevertheless, the electrochemical properties of current organic electrodes still lag behind those of their inorganic counterparts. In this study, nitro groups were incorporated into pyrene-4, 5, 9, 10-tetraone (PTO), resulting in an elevated discharge voltage due to their strong electron-withdrawing capabilities.

View Article and Find Full Text PDF

Building Localized NADP(H) Recycling Circuits to Advance Enzyme Cascadetronics.

Angew Chem Int Ed Engl

January 2025

University of Oxford, Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The catalytic action of enzymes of a cascade trapped within a mesoporous electrode material is simultaneously energized, controlled and observed through the efficient, reversible electrochemical NAD(P)(H) recycling catalyzed by one of the enzymes. In their nanoconfined state, nicotinamide cofactors are tightly channeled current carriers, mediating multi-step reactions in either direction (oxidation or reduction) with a rapid response time. By incorporating a hydrogen‑borrowing enzyme pair, the internal action of which opposes the external voltage bias driving oxidation or reduction, a reduction process can be performed under overall oxidizing conditions, and vice versa.

View Article and Find Full Text PDF

A novel efficient electrochemical sensor for detecting paracetamol contaminants in polluted water using an active electrode from tungsten oxide nanoplates.

Phys Chem Chem Phys

January 2025

Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia.

Herein, electrochemical sensing of paracetamol in polluted water was achieved using facile-synthesized tungsten oxide nanoparticles. Ion exchange resin has been used as a sustainable preparation route, while the prepared nanoparticles have been characterized by XRD and SEM analyses. Orthorhombic WO·HO nano-plates have been synthesized a facile preparation method, where the crystal size has been calculated as 25-33 nm, and these results were used to create a 3D model of the prepared WO·HO nano-plates.

View Article and Find Full Text PDF

3D porous carbon electrodes have attracted significant attention for advancing compressible supercapacitors (SCs) in flexible electronics. The micro- and nanoscale architecture critically influences the mechanical and electrochemical performance of these electrodes. However, achieving a balance between high compressive strength, electrochemical stability, and cost-effective sustainable production remains challenging.

View Article and Find Full Text PDF

Targeted Docking of Localized Hydrogen Bond for Efficient and Reversible Zinc-Ion Batteries.

Angew Chem Int Ed Engl

January 2025

Central South University, material science and engineering, 932 Lushan Road, 410083, Changsha, CHINA.

Hydrogen bond (HB) chemistry, a pivotal feature of aqueous zinc-ion batteries, modulates electrochemical processes through weak electrostatic interactions among water molecules. However, significant challenges persist, including sluggish desolvation kinetics and inescapable parasitic reactions at the electrolyte-electrode interface, associated with high water activity and strong Zn2+-solvent coordination. Herein, a targeted localized HB docking mechanism is activated by the polyhydroxy hexitol-based electrolyte, optimizing Zn2+ solvation structures via dipole interaction and reconstructing interfacial HB networks through preferential parallel adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!