This contribution describes the synthesis of [2.2](1,5)naphthalenoparacyclophane-1,13-diene in four steps from 1,5-bis(bromomethyl)naphthalene and 1,4-benzenedimethanethiol. Consisting of 2,6-dioctyloxynaphthalene and benzene moieties, the effects of differing arene size on the structure, strain energy, and chemical reactivity of the cyclophanediene are examined. Despite a strain energy of 24.3 kcal/mol, the naphthalenoparacyclophanediene was unreactive toward a library of olefin metathesis catalysts. This diminished reactivity can be explained by the steric hindrance of the twisted olefin. Incorporation of an electron donor (naphthalene) into the rigid paracyclophanediene structure can allow for applications in optoelectronics, chiral ligands, and planar chiral materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507662 | PMC |
http://dx.doi.org/10.1021/acs.joc.3c00880 | DOI Listing |
Amino acid insertions and deletions (indels) are among the most common protein mutations and necessitate changes to a protein's backbone geometry. Examining how indels affect protein folding stability (and especially how indels can increase stability) can help reveal the role of backbone energetics on stability and introduce new protein engineering strategies. Tsuboyama et al.
View Article and Find Full Text PDFRSC Adv
January 2025
Botany and Microbiology Department, Faculty of Science, Al-Azhar University Nasr City Cairo 11884 Egypt
In this study, a nanocomposite based on copper oxide-zinc oxide nanoparticles and Gum Arabic (GA@CuO-ZnO nanocomposite) was successfully synthesized using green method. Characterization results revealed that the prepared nanocomposite appeared at the nanoscale level, showed excellent dispersion, and formed stable colloidal nano-solutions. The bimetallic GA@CuO-ZnO nanocomposite was evaluated for its anticancer, antibacterial, and antifungal properties.
View Article and Find Full Text PDFRSC Adv
January 2025
The Second Department, Xi' an Modern Chemistry Research Institute Xi'an 710065 China
To fully understand the variation in performance of cyclotrimethylenetrinitramine (RDX) crystals under strong magnetic field exposure, the strong magnetic loading of RDX was conducted in both stable and alternating magnetic fields. The morphological changes of RDX crystals exposed to magnetic fields were studied under a scanning electron microscope. Then, the lattice changes of RDX exposed to magnetic fields were analyzed through X-ray diffraction and Raman spectroscopy.
View Article and Find Full Text PDFChemistry
January 2025
Shandong University, School of Chemistry and Chemical Engineering, 27 Shanda Nan Road, 250100, Jinan, CHINA.
Photophysical properties of condensed systems generally originate from collective contributions of all components in their stochastically fluctuated structures and are strongly influenced under strain of chromophores. To precisely identify how the stochastically fluctuated monomers synergistically manipulate the properties, we propose a statistic strategy over sufficient ab initio molecular dynamics (AIMD) samplings and for the first time uncover that synergistic oscillatory twisting (SOT) of neighboring under-strain monomers manipulates the bifunction of rubrene crystal. The under-strain trunk SOT can regulate both singlet fission (SF) and triplet-triplet annihilation (TTA), enabling their coexistence and dominance switching by dynamically modulating the matching of excitation energies.
View Article and Find Full Text PDFAdv Mater
January 2025
CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China.
Discovering and utilizing the unique optoelectronic properties of transition metal dichalcogenides (TMDCs) is of great significance for developing next-generation electronic devices. In particular, research on Dirac state modulations of TMDCs under external strains is lacking. To fill this research gap, it has established a comprehensive database of 90 types of TMDCs and their response behaviors under external strains have been systematically investigated regarding the presence of Dirac cones and electronic structure evolutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!