Divergent rainforest tree microbiomes between phases of the monsoon cycle, host plants and tissues.

Plant Biol (Stuttg)

Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, QLD, Australia.

Published: October 2023

AI Article Synopsis

  • The Australian Monsoon Tropics are highly biodiverse but lack detailed studies on rainforest plant microbiomes, especially endophytes (fungi and bacteria).
  • Research examined whether tree endophyte communities vary by season, tissue type, forest microclimate, host plant species, and clade using genetic sequencing methods.
  • Findings show that endophyte composition changes between wet and dry seasons, differs between leaf and stem tissues, is influenced by host plant relationships, and reveals an increase in bacterial diversity in stems during the dry season.

Article Abstract

The Australian Monsoon Tropics (AMT) contain some of the most biodiverse forests on the continent. Little is known about the dynamics of rainforest plant microbiomes in general, and there have been no community-level studies on Australian rainforest endophytes, their seasonality, tissue and host specificity. We tested whether community composition of tropical tree endophytes (fungi and bacteria) differs: (i) at different points during a monsoon cycle, (ii) between leaf and stem tissues, (iii) between forest microclimates (gully/ridge), and between (iv) host plant species, and (v) host plant clade, using amplicon sequencing of the bacterial 16S and fungal ITS2 gene regions. Results indicated that the composition of rainforest plant microbiomes differs between wet and dry seasons, which may be explained by physiological shifts in host plants due to annual climate fluctuations from mesic to xeric. Endophyte microbiomes differed between leaves and stems. Distinct fungal communities were associated with host species and clades, with some trees enriched in a number of fungal taxa compared to host plants in other clades. Diversity of bacterial endophytes in plant stems increased in the dry season. We conclude that the microbiomes of tropical plants are responsive to monsoonal climate variation, are highly compartmentalised between plant tissues, and may be partly shaped by the relatedness of their host plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/plb.13569DOI Listing

Publication Analysis

Top Keywords

host plants
16
monsoon cycle
8
host
8
rainforest plant
8
plant microbiomes
8
host plant
8
plant
6
microbiomes
5
plants
5
divergent rainforest
4

Similar Publications

Background: Acquiring representative bacterial 16S rRNA gene community profiles in plant microbiome studies can be challenging due to the excessive co-amplification of host chloroplast and mitochondrial rRNA gene sequences that reduce counts of plant-associated bacterial sequences. Peptide Nucleic Acid (PNA) clamps prevent this by blocking PCR primer binding or binding within the amplified region of non-target DNA to stop the function of DNA polymerase. Here, we applied a universal chloroplast (p)PNA clamp and a newly designed mitochondria (m)PNA clamp to minimise host chloroplast and mitochondria amplification in 16S rRNA gene amplicon profiles of leaf, bark and root tissue of two oak species (Quercus robur and Q.

View Article and Find Full Text PDF

The cabbage aphid, Brevicoryne brassicae, is a major pest on Brassicaceae plants, causing significant yield losses annually. However, the lack of genomic resources has hindered progress in understanding this pest at the molecular level. Here, we present a high-quality, chromosomal-level genome assembly for B.

View Article and Find Full Text PDF

Gut microbiota as a new target for hyperuricemia: A perspective from natural plant products.

Phytomedicine

January 2025

National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China. Electronic address:

Background: Hyperuricemia, a prevalent chronic metabolic disorder caused by purine metabolism disturbances, is characterized by elevated serum uric acid (UA) levels. Prolonged hyperuricemia can cause severe complications such as gout or kidney damage. However, the toxic side effects of and adverse reactions to UA-lowering drugs are becoming increasingly prominent.

View Article and Find Full Text PDF

Fig (Ficus carica L.) holds economic significance in Atushi, Xinjiang, but as fig cultivation expands, disease prevalence has risen. In July 2024, approximately 22% of harvested fig (cv.

View Article and Find Full Text PDF

Occurrence of AG-5 Causing Root Rot on in Northwestern China.

Plant Dis

January 2025

Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China;

Astragalus mongholicus is a perennial Chinese medicinal herb in the family Leguminosae widely cultivated in China. In September 2023, A. mongholicus plants in a field in Weiyuan County, Gansu Province, showed symptoms of circular or irregular brown, sunken and necrotic lesions, multiple lesions coalesced, and brown longitudinal cracks in the roots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!