A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Does acclimation in distinct light conditions determine differences in the photosynthetic heat tolerance of coffee plants? | LitMetric

Does acclimation in distinct light conditions determine differences in the photosynthetic heat tolerance of coffee plants?

Plant Biol (Stuttg)

Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Published: December 2023

Worldwide coffee production is threatened by climate change, which highlights the importance of heat tolerance studies. Here we tested the hypothesis that photosynthetic heat tolerance in coffee varieties changes according to acclimation to distinct light conditions. Furthermore, we tested if heat tolerance is associated with the habitat of origin of the coffee species. We evaluated heat tolerance using chlorophyll fluorescence in varieties of Coffea arabica (Mundo Novo and Catuai Amarelo) and C. canephora (Conilon) grown in a common garden under two conditions: high (HS) and low (LS) sunlight. Leaf traits associated with leaf cooling were evaluated in plants grown in LS and HS and associations of heat tolerance with these traits were determined. The varieties tested had high photosynthetic heat tolerance, with temperatures above 54 °C leading to a 50% reduction in F /F (T ). The heat tolerance of each Coffea variety was unaffected by growth in distinct light conditions. Leaves of plants grown in LS were larger and had a lower fraction of the leaf area occupied by stomata (na ). Heat tolerance was positively associated with leaf size and negatively with na . C. canephora exhibited higher heat tolerance than C. arabica. The limited plasticity of heat tolerance in response to acclimation under distinct light conditions contradicts the prediction that plants acclimated to HS would have higher photosynthetic heat tolerance than those acclimated to LS. Our results on heat tolerance among Coffea species/varieties in HS and LS indicate the possibility of selection of varieties for better acclimation to ongoing climate changes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/plb.13574DOI Listing

Publication Analysis

Top Keywords

heat tolerance
52
distinct light
16
light conditions
16
photosynthetic heat
16
heat
13
tolerance
13
acclimation distinct
12
tolerance coffee
8
associated leaf
8
plants grown
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!