A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On Network Structural and Temporal Encodings: A Space and Time Odyssey. | LitMetric

The dynamic network visualization design space consists of two major dimensions: network structural and temporal representation. As more techniques are developed and published, a clear need for evaluation and experimental comparisons between them emerges. Most studies explore the temporal dimension and diverse interaction techniques supporting the participants, focusing on a single structural representation. Empirical evidence about performance and preference for different visualization approaches is scattered over different studies, experimental settings, and tasks. This paper aims to comprehensively investigate the dynamic network visualization design space in two evaluations. First, a controlled study assessing participants' response times, accuracy, and preferences for different combinations of network structural and temporal representations on typical dynamic network exploration tasks, with and without the support of standard interaction methods. Second, the best-performing combinations from the first study are enhanced based on participants' feedback and evaluated in a heuristic-based qualitative study with visualization experts on a real-world network. Our results highlight node-link with animation and playback controls as the best-performing combination and the most preferred based on ratings. Matrices achieve similar performance to node-link in the first study but have considerably lower scores in our second evaluation. Similarly, juxtaposition exhibits evident scalability issues in more realistic analysis contexts.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2023.3310019DOI Listing

Publication Analysis

Top Keywords

network structural
12
structural temporal
12
dynamic network
12
network visualization
8
visualization design
8
design space
8
network
7
temporal
4
temporal encodings
4
encodings space
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!