Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The dynamic network visualization design space consists of two major dimensions: network structural and temporal representation. As more techniques are developed and published, a clear need for evaluation and experimental comparisons between them emerges. Most studies explore the temporal dimension and diverse interaction techniques supporting the participants, focusing on a single structural representation. Empirical evidence about performance and preference for different visualization approaches is scattered over different studies, experimental settings, and tasks. This paper aims to comprehensively investigate the dynamic network visualization design space in two evaluations. First, a controlled study assessing participants' response times, accuracy, and preferences for different combinations of network structural and temporal representations on typical dynamic network exploration tasks, with and without the support of standard interaction methods. Second, the best-performing combinations from the first study are enhanced based on participants' feedback and evaluated in a heuristic-based qualitative study with visualization experts on a real-world network. Our results highlight node-link with animation and playback controls as the best-performing combination and the most preferred based on ratings. Matrices achieve similar performance to node-link in the first study but have considerably lower scores in our second evaluation. Similarly, juxtaposition exhibits evident scalability issues in more realistic analysis contexts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2023.3310019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!