Chronic stress can lead to prolonged adrenal gland secretion of cortisol, resulting in human ailments such as anxiety, post-traumatic stress disorder, metabolic syndrome, diabetes, immunosuppression, and cardiomyopathy. Real time monitoring of chronic increases in cortisol and intervening therapies to minimize the physiological effects of stress would be beneficial to prevent these endocrine related illnesses. Gut microbiota have shown the ability to secrete, respond, and even regulate endocrine hormones. One such microbe, , responds transcriptionally to cortisol. We engineered these cortisol responsive genetic elements from into an enteric probiotic, Nissle 1917, to drive the expression of a fluorescent reporter allowing for the designing, testing, and building of a robust and physiologically relevant novel cortisol probiotic sensor. This smart probiotic was further engineered to be more sensitive and to respond to elevated cortisol by expressing tryptophan decarboxylase, thereby bestowing the ability to generate tryptamine and serotonin. Here we show that upon cortisol treatment the smart probiotic produces measurable amounts of tryptamine. Accumulated levels of these neuromodulators should improve mood, anxiety, and depression and drive down cortisol levels. Importantly, this work can serve as a model for the engineering of a sense-and-respond probiotic to modulate the gut-brain axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.2c01300 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!