sp. strain 273 grows with medium-chain terminally fluorinated alkanes under oxic conditions, releases fluoride, and synthesizes long-chain fluorofatty acids. To shed light on the genes involved in fluoroalkane metabolism, genome, and transcriptome sequencing of strain 273 grown with 1,10-difluorodecane (DFD), decane, and acetate were performed. Strain 273 harbors three genes encoding putative alkane monooxygenases (AlkB), key enzymes for initiating alkane degradation. Transcripts of -2 were significantly more abundant in both decane- and DFD-grown cells compared to acetate-grown cells, suggesting AlkB-2 catalyzes the attack on terminal CH and CHF groups. Coordinately expressed with -2 was an adjacent gene encoding a fused ferredoxin-ferredoxin reductase (Fd-Fdr). Phylogenetic analysis distinguished AlkB that couples with fused Fd-Fdr reductases from AlkB with alternate architectures. A gene cluster containing an ()-2-haloacid dehalogenase () gene was up-regulated in cells grown with DFD, suggesting a possible role in the removal of the ω-fluorine. Genes involved in long-chain fatty acid biosynthesis were not differentially expressed during growth with acetate, decane, or DFD, suggesting the bacterium's biosynthetic machinery does not discriminate against monofluoro-fatty acid intermediates. The analysis sheds first light on genes and catalysts involved in the microbial metabolism of fluoroalkanes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217894 | PMC |
http://dx.doi.org/10.1021/acs.est.3c03855 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!