In this work, nano-levodopa-liposomes (L-dopa-Lip) suspension was prepared by rotary-evaporated film-ultrasonic method, and freeze-drying powders of L-dopa-Lip were also obtained to improve the stability. The products were characterized by TEM, DLS, and TG-DSC, and the phase-transition temperature (T) and encapsulation efficiency were calculated. The brain-targeting and in vitro release of the drug was also studied. The results showed that L-dopa-Lip were well-formed spherical vesicles, and the sizes were about 100 nm, and the encapsulation efficiency was higher than 90%. The drug release temperature of L-dopa-Lip was 68 °C, and the in vitro release property and mathematical model were also studied. The brain targeting of L-dopa-Lip in vivo was explored by injecting the gold nanoparticles (AuNPs) labeled L-dopa-Lip (AuNPs-L-dopa-Lip) through the tail vein. ICP-MS and TEM showed that L-dopa-Lip had brain targeting, suggesting the potential treatment of L-dopa-Lip on brain dysfunction. The results of this work might be helpful for designing drug-loaded liposomes for the treatment of central nervous system (CNS) diseases and monitoring their distributions in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-023-04673-w | DOI Listing |
J Tissue Eng
January 2025
Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Reproductive Health and Infertility, Zigong Maternal and Child Health Hospital, Zigong, Sichuan, China.
Introduction: The polyspermy rate is a quality control indicator in the embryology laboratory, and factors affecting polyspermy are of great interest. The gonadotropin-releasing hormone (GnRH) antagonist protocol is currently the mainstream protocol in most reproductive centers. This study explored the factors influencing polyspermy in fertilization (IVF) using the GnRH antagonist protocol and considered corresponding improvement measures.
View Article and Find Full Text PDFEnteroendocrine cells (EECs) are a rare cell type of the intestinal epithelium. Various subtypes of EECs produce distinct repertoires of monoamines and neuropeptides which modulate intestinal motility and other physiologies. EECs also possess neuron-like properties, suggesting a potential vulnerability to ingested environmental neurotoxicants.
View Article and Find Full Text PDFBackground: Cachexia is defined by chronic loss of fat and muscle, is a frequent complication of pancreatic ductal adenocarcinoma (PDAC), and negatively impacts patient outcomes. Nutritional supplementation cannot fully reverse tissue wasting, and the mechanisms underlying this phenotype are unclear. This work aims to define the relative contributions of catabolism and anabolism to adipose wasting in PDAC-bearing mice.
View Article and Find Full Text PDFFront Immunol
December 2024
The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.
Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response to infections that is initiated by the body's innate immune system. Nearly a decade ago, we discovered that bacterial lipopolysaccharide (LPS) and serum amyloid A (SAA) upregulated Connexin 43 (Cx43) and Pannexin 1 (Panx1) hemichannels in macrophages. When overexpressed, these hemichannels contribute to sepsis pathogenesis by promoting ATP efflux, which intensifies the double-stranded RNA-activated protein kinase R (PKR)-dependent inflammasome activation, pyroptosis, and the release of pathogenic damage-associated molecular pattern (DAMP) molecules, such as HMGB1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!