HIV-1 infection elevates the risk of developing various cancers, including T-cell lymphoma. Whether HIV-1-encoded proteins directly contribute to oncogenesis remains unknown. We observed that approximately 1-5% of CD4 T cells from the blood of people living with HIV-1 exhibit over-duplicated centrioles, suggesting that centrosome amplification underlies the development of HIV-1-associated cancers by driving aneuploidy. Through affinity purification, biochemical, and cell biology analyses, we discovered that Vpr, an accessory protein of HIV-1, hijacks the centriole duplication machinery and induces centrosome amplification and aneuploidy. Mechanistically, Vpr formed a cooperative ternary complex with an E3 ligase subunit, VprBP, and polo-like kinase 4 (Plk4). Unexpectedly, however, the complex enhanced Plk4's functionality by promoting its relocalization to the procentriole assembly and induced centrosome amplification. Loss of either Vpr's C-terminal 17 residues or VprBP acidic region, the two elements required for binding to Plk4 cryptic polo-box, abrogated Vpr's capacity to induce all these events. Furthermore, HIV-1 WT, but not its Vpr mutant, induced multiple centrosomes and aneuploidy in primary CD4 T cells. We propose that the Vpr•VprBP•Plk4 complex serves as a molecular link that connects HIV-1 infection to oncogenesis and that inhibiting the Vpr C-terminal motif may reduce the occurrence of HIV-1-associated cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462243PMC
http://dx.doi.org/10.21203/rs.3.rs-2924123/v1DOI Listing

Publication Analysis

Top Keywords

centrosome amplification
16
cd4 cells
12
amplification aneuploidy
8
vpr•vprbp•plk4 complex
8
hiv-1 infection
8
hiv-1-associated cancers
8
hiv-1
5
centrosome
4
aneuploidy
4
aneuploidy driven
4

Similar Publications

Karyotype instability in the germline leads to infertility. Unlike the female germline, the male germline continuously produces fertile sperm throughout life. Here we present a molecular network responsible for maintaining karyotype stability in the male mouse germline.

View Article and Find Full Text PDF

Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics.

Eur J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.

View Article and Find Full Text PDF

Targeting the mitotic kinase NEK2 enhances CDK4/6 inhibitor efficacy by potentiating genome instability.

J Biol Chem

January 2025

Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA. Electronic address:

Selective inhibitors that target cyclin dependent kinases 4 and 6 (CDK4/6i) are FDA approved for treatment of a subset of breast cancers and are being evaluated in numerous clinical trials for other cancers. Despite this advance, a subset of tumors are intrinsically resistant to these drugs and acquired resistance is nearly inevitable. Recent mechanistic evidence suggests that in addition to stalling the cell cycle, the anti-tumor effects of CDK4/6i involve the induction of chromosomal instability (CIN).

View Article and Find Full Text PDF

OTUD6B regulates KIFC1-dependent centrosome clustering and breast cancer cell survival.

EMBO Rep

January 2025

Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.

Cancer cells often display centrosome amplification, requiring the kinesin KIFC1/HSET for centrosome clustering to prevent multipolar spindles and cell death. In parallel siRNA screens of deubiquitinase enzymes, we identify OTUD6B as a positive regulator of KIFC1 expression that is required for centrosome clustering in triple-negative breast cancer (TNBC) cells. OTUD6B can localise to centrosomes and the mitotic spindle and interacts with KIFC1.

View Article and Find Full Text PDF

STIL is a regulatory protein essential for centriole biogenesis, and its dysregulation has been implicated in various diseases, including malignancies. However, its role in non-small-cell lung carcinoma (NSCLC) remains unclear. In this study, we examined STIL expression and its potential association with chromosomal numerical abnormalities (CNAs) in NSCLC using The Cancer Genome Atlas (TCGA) dataset, immunohistochemical analysis, and in vitro experiments with NSCLC cell lines designed to overexpress STIL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!