Prior work suggests influenza A virus (IAV) crosses the airway mucus barrier in a sialic acid-dependent manner through the actions of the viral envelope proteins, hemagglutinin and neuraminidase. However, host and viral factors that influence how efficiently mucus traps IAV remain poorly defined. In this work, we assessed how the physicochemical properties of mucus influence its ability to effectively capture IAV with altered sialic acid preference using fluorescence video microscopy and multiple particle tracking. We found an airway mucus gel layer must be produced with pores on the order of size of the virus to physically constrain IAV. Sialic acid binding by IAV also improves mucus trapping efficiency, but interestingly, sialic acid preferences had little impact on the fraction of IAV particles expected to penetrate the mucus barrier. Together, this work provides new insights on mucus barrier function toward IAV with important implications on innate host defense and interspecies transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462089 | PMC |
http://dx.doi.org/10.1101/2023.08.14.553271 | DOI Listing |
Adv Mater
January 2025
School of Life Sciences, Xiamen University, Xiamen, 361102, China.
The gastric mucosal barrier, through its gastric pits, serves as a pathway for secretions, ensuring that mucus produced by the gastric glands is transferred to the gastric lumen, providing stable protection. Here a bioinspired liquid pockets material is shown, composed of a thermo-driven hydrogel that acts as an external activation unit to release interflowing liquid responsively, and porous matrices that serve as interconnected pockets to transfer it, enabling controlled internal flow and adaptive barrier functionality. Experiments and theoretical analysis demonstrate the stability and regulatory mechanisms of these liquid pockets, based on the interconnected pockets between the external activation unit and internal fluid flow.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden.
Mucus in the colon is crucial for intestinal homeostasis by forming a barrier that separates microbes from the epithelium. This is achieved by the structural arrangement of the major mucus proteins, such as MUC2 and FCGBP, both of which are comprised of several von Willebrand D domains (vWD) and assemblies. Numerous disulfide bonds stabilise these domains, and intermolecular bonds generate multimers of MUC2.
View Article and Find Full Text PDFACS Nano
January 2025
Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
Sci Rep
December 2024
Rheonova, 1 Allee de Certéze, 38610, Gières, France.
Pulmonary mucus serves as a crucial protective barrier in the respiratory tract, defending against pathogens and contributing to effective clearance mechanisms. In Muco Obstructive Pulmonary Diseases (MOPD), abnormal rheological properties lead to highly viscous mucus, fostering chronic infections and exacerbations. While prior research has linked mucus viscoelasticity to its mucin content, the variability in MOPD patients implies the involvement of other factors.
View Article and Find Full Text PDFFood Funct
December 2024
College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic conditions characterized by periods of intestinal inflammation and have become global diseases. Dietary pectins have shown protective effects on IBD models. However, the development of pectin-based diet intervention for IBD individuals requires knowledge of both the bioactive structural patterns and the mechanisms underlying diet-microbiota-host interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!