A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

GSK3α/β restrains IFNγ-inducible costimulatory molecule expression in alveolar macrophages, limiting CD4 T cell activation. | LitMetric

GSK3α/β restrains IFNγ-inducible costimulatory molecule expression in alveolar macrophages, limiting CD4 T cell activation.

bioRxiv

Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA.

Published: August 2023

Macrophages play a crucial role in eliminating respiratory pathogens. Both pulmonary resident alveolar macrophages (AMs) and recruited macrophages contribute to detecting, responding to, and resolving infections in the lungs. Despite their distinct functions, it remains unclear how these macrophage subsets regulate their responses to infection, including how activation by the cytokine IFNγ is regulated. This shortcoming prevents the development of therapeutics that effectively target distinct lung macrophage populations without exacerbating inflammation. We aimed to better understand the transcriptional regulation of resting and IFNγ-activated cells using a new model of AMs from mice, fetal liver-derived alveolar-like macrophages (FLAMs), and immortalized bone marrow-derived macrophages (iBMDMs). Our findings reveal that IFNγ robustly activates both macrophage types; however, the profile of activated IFNγ-stimulated genes varies greatly between these cell types. Notably, FLAMs show limited expression of costimulatory markers essential for T cell activation upon stimulation with only IFNγ. To understand cell type-specific differences, we examined how the inhibition of the regulatory kinases GSK3α/β alters the IFNγ response. GSK3α/β controlled distinct IFNγ responses, and in AM-like cells, we found GSK3α/β restrained the induction of type I IFN and TNF, thus preventing the robust expression of costimulatory molecules and limiting CD4 T cell activation. Together, these data suggest that the capacity of AMs to respond to IFNγ is restricted in a GSK3α/β-dependent manner and that IFNγ responses differ across distinct macrophage populations. These findings lay the groundwork to identify new therapeutic targets that activate protective pulmonary responses without driving deleterious inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462134PMC
http://dx.doi.org/10.1101/2023.08.16.553574DOI Listing

Publication Analysis

Top Keywords

cell activation
12
alveolar macrophages
8
limiting cd4
8
cd4 cell
8
macrophage populations
8
expression costimulatory
8
ifnγ responses
8
ifnγ
7
macrophages
6
cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!