Food wastes are an abundant resource that can be effectively valorised by hydrothermal liquefaction to produce bio-fuels. The objective of the European project WASTE2ROAD is to demonstrate the complete value chain from waste collection to engine tests. The principle of hydrothermal liquefaction is well known but there are still many factors that make the science very empirical. Most experiments in the literature are performed on batch reactors. Comparison of results from batch reactors with experiments with continuous reactors are rare in the literature. Various food wastes were transformed by hydrothermal liquefaction. The resources used and the products from the experiments have been extensively analysed. Two different experimental reactors have been used, a batch reactor and a continuous reactor. This paper presents a dataset of fully documented experiments performed in this project, on food wastes with different compositions, conditions and solvents. The data set is extended with data from the literature. The data was analysed using machine learning analysis and regression techniques. This paper presents experimental results on various food wastes as well as modelling and analysis with machine learning algorithms. The experimental results were used to attempt to establish a link between batch and continuous experiments. The molecular weight of bio-oil from continuous experiments appear higher than that of batch experiments. This may be due to the configuration of our reactor. This paper shows how the use of regression models help with understanding the results, and the importance of process variables and resource composition. A novel data analysis technique gives an insight on the accuracy that can be obtained from these models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445818 | PMC |
http://dx.doi.org/10.12688/openreseurope.14915.2 | DOI Listing |
One Health
June 2025
Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
Controlling insect pests that destroy crop and spread diseases will become increasingly crucial for addressing the food demands of a growing global population and the expansion of vector-borne diseases. A key challenge is the development of a balanced approach for sustainable food production and disease control in 2050 and beyond. Microbial biopesticides, derived from bacteria, viruses, fungi, protozoa, or nematodes, offer potentially significant benefits for promoting One Health and contributing to several United Nations Sustainable Development Goals (SDGs).
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, U.P. 221005 India.
Unlabelled: Potato peels are one of the most under-utilized wastes which can be highly beneficial to mankind. The red potato peel powder was prepared by using tray drying and vacuum-oven drying method. The proximate analysis of red potato peel powder was conducted followed by its characterization which includes FT-IR, XRD, TGA, DSC, and SEM.
View Article and Find Full Text PDFFood Chem X
January 2025
Istanbul Aydin University, Engineering Faculty, Food Engineering Department, 34295 Istanbul, Türkiye.
This study investigated the properties of films based on avocado () seed starch. A full factorial experimental design was performed using different amounts of starch (3-5 %) and glycerol (0.75-1.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
ISPAAM-CNR, Sassari, Italy.
Background: Biowaste accounts for about 40% of total waste. Food-industry waste is one major biowaste stream. The available technological approaches to biowaste treatment are expensive, not circular, unsustainable, and they require pre-treatments such as dehydration, extraction of inhibitors, pH correction, or the addition of other organic matrices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!